Aisha Nazli
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aisha Nazli.
PLOS Pathogens | 2010
Aisha Nazli; Olivia Chan; Wendy N. Dobson-Belaire; Michel Ouellet; Michel J. Tremblay; Scott D. Gray-Owen; A. Larry Arsenault; Charu Kaushic
While several clinical studies have shown that HIV-1 infection is associated with increased permeability of the intestinal tract, there is very little understanding of the mechanisms underlying HIV-induced impairment of mucosal barriers. Here we demonstrate that exposure to HIV-1 can directly breach the integrity of mucosal epithelial barrier, allowing translocation of virus and bacteria. Purified primary epithelial cells (EC) isolated from female genital tract and T84 intestinal cell line were grown to form polarized, confluent monolayers and exposed to HIV-1. HIV-1 X4 and R5 tropic laboratory strains and clinical isolates were seen to reduce transepithelial resistance (TER), a measure of monolayer integrity, by 30–60% following exposure for 24 hours, without affecting viability of cells. The decrease in TER correlated with disruption of tight junction proteins (claudin 1, 2, 4, occludin and ZO-1) and increased permeability. Treatment of ECs with HIV envelope protein gp120, but not HIV tat, also resulted in impairment of barrier function. Neutralization of gp120 significantly abrogated the effect of HIV. No changes to the barrier function were observed when ECs were exposed to Env defective mutant of HIV. Significant upregulation of inflammatory cytokines, including TNF-α, were seen in both intestinal and genital epithelial cells following exposure to HIV-1. Neutralization of TNF-α reversed the reduction in TERs. The disruption in barrier functions was associated with viral and bacterial translocation across the epithelial monolayers. Collectively, our data shows that mucosal epithelial cells respond directly to envelope glycoprotein of HIV-1 by upregulating inflammatory cytokines that lead to impairment of barrier functions. The increased permeability could be responsible for small but significant crossing of mucosal epithelium by virus and bacteria present in the lumen of mucosa. This mechanism could be particularly relevant to mucosal transmission of HIV-1 as well as immune activation seen in HIV-1 infected individuals.
The FASEB Journal | 2003
Mahmood Akhtar; James L. Watson; Aisha Nazli; Derek M. McKay
Recognition of bacterial products by the innate immune system is dependent on pattern‐recognition receptors: toll‐like receptor 9 (TLR‐9) in the case of bacterial DNA. We hypothesized that bacterial DNA can directly affect enteric epithelial cells. RT‐PCR revealed constitutive TLR‐9 mRNA expression in three human colonic epithelial cell lines (T84, HT‐29, Caco‐2) and THP‐1 monocytes. Epithelial cells, in six‐well culture plates or on filter supports, were exposed to E. coli DNA (1–50 µg/ml), synthetic CpG‐rich oligonucleotides, or calf thymus DNA for 6–48 h. Exposure to E. coli DNA resulted in an increase in IL‐8 mRNA, and a time‐and dose‐dependent increase in IL‐8 secretion. Also, CpG oligonucleotides induced epithelial IL‐8 production, whereas calf thymus DNA did not. Exposure to E. coli DNA resulted in phosphorylation of ERK 1/2 MAPK and inhibitors of ERK activity (PD98059, UO126) significantly reduced the evoked IL‐8 production. In contrast, inhibitors of NFκB activity (PDTC, SN50) did not block E. coli DNA‐induced IL‐8 production. Electrophoretic mobility shift assays revealed that E. coli DNA stimulated epithelial AP‐1 but not NFκB activation. The barrier (i.e., transepithelial resistance) and ion transport parameters of epithelial monolayers (assessed in Ussing chambers) were unaltered following E. coli DNA exposure. Thus model gut epithelia express TLR‐9 mRNA and, while maintaining their barrier function, can respond to E. coli DNA by increased IL‐8 production.
American Journal of Pathology | 2004
Aisha Nazli; Ping-Chang Yang; Jennifer Jury; Kathryn L. Howe; James L. Watson; Johan D. Söderholm; Philip M. Sherman; Mary H. Perdue; Derek M. McKay
The normal gut flora has been implicated in the pathophysiology of inflammatory bowel disease and there is increased interest in the role that stress can play in gut disease. The chemical stressor dinitrophenol (DNP, uncouples oxidative phosphorylation) was injected into the ileum of laparotomized rats and mitochondria structure, epithelial permeability, and inflammatory cell infiltrate were examined 6 and 24 hours later. Monolayers of human colonic epithelial cells (T84, HT-29) were treated with DNP +/- commensal Escherichia coli, followed by assessment of epithelial permeability, bacterial translocation, and chemokine (ie, interleukin-8) synthesis. Delivery of DNP into rat distal ileum resulted in disruption of epithelial mitochondria; similar changes were noted in mildly inflamed ileal resections from patients with Crohns disease. Also, DNP-treated ileum displayed increased gut permeability and immune cell recruitment. Subsequent studies revealed deceased barrier function, increased bacterial translocation, increased production of interleukin-8, and enhanced mobilization of the transcription factor AP-1 in the model epithelial cell lines exposed to commensal bacteria (E. coli strains HB101 or C25), but only when the monolayers were pretreated with DNP (0.1 mmol/L). These data suggest that enteric epithelia under metabolic stress perceive a normally innocuous bacterium as threatening, resulting in loss of barrier function, increased penetration of bacteria into the mucosa, and increased chemokine synthesis. Such responses could precipitate an inflammatory episode and contribute to existing enteric inflammatory disorders.
American Journal of Pathology | 2005
Kathryn L. Howe; Colin Reardon; Arthur Wang; Aisha Nazli; Derek M. McKay
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an enteric pathogen that causes potentially fatal symptoms after intimate adhesion, modulation of intestinal epithelial signal transduction, and alteration of epithelial function (eg, barrier disruption). Although the epithelial barrier is critical to gut homeostasis, only a few agents, such as transforming growth factor (TGF)-beta, can enhance or protect epithelial barrier function. Our aims were to delineate the mechanism(s) behind TGF-beta-induced barrier enhancement and to determine whether TGF-beta could prevent EHEC-induced barrier disruption. Using monolayers of the human T84 colonic epithelial cell line, we found that TGF-beta induced a significant increase in transepithelial electrical resistance (a measure of paracellular permeability) through activation of ERK MAPK and SMAD signaling pathways and up-regulation of the tight junction protein claudin-1. Additionally, TGF-beta pretreatment of epithelia blocked the decrease in transepithelial electrical resistance and the increase in transepithelial passage of [(3)H]-mannitol caused by EHEC infection. EHEC infection was associated with reduced expression of zonula occludens-1, occludin, and claudin-2 (but not claudin-1 or claudin-4); TGF-beta pretreatment prevented these changes. These studies provide insight into EHEC pathogenesis by illustrating the mechanisms underlying TGF-beta-induced epithelial barrier enhancement and identifying TGF-beta as an agent capable of blocking EHEC-induced increases in epithelial permeability via maintenance of claudin-2, occludin, and zonula occludens-1 levels.
Mucosal Immunology | 2012
C.J. Kim; Aisha Nazli; O L Rojas; D Chege; Z Alidina; Sanja Huibner; S Mujib; E Benko; Colin Kovacs; L Y Y Shin; A Grin; G Kandel; Mona Loutfy; Mario A. Ostrowski; J L Gommerman; Charu Kaushic; Rupert Kaul
Interleukin-22 (IL-22) is a cytokine with epithelial reparative and regenerative properties that is produced by Th22 cells and by other immune cell subsets. Therefore, we explored the hypothesis that disruption of the gut barrier during HIV infection involves dysregulation of these cells in the gastrointestinal mucosa. Sigmoid IL-22-producing T cell and Th22 cells were dramatically depleted during chronic HIV infection, epithelial integrity was compromised, and microbial translocation was increased. These alterations were reversed after long-term antiretroviral therapy. While all mucosal IL-22-producing T-cell subsets were also depleted very early during HIV infection, at these early stages IL-22 production by non-T-cell populations (including NKp44+ cells) was increased and gut epithelial integrity was maintained. Circulating Th22 cells expressed a higher level of the HIV co-receptor/binding molecules CCR5 and α4β7 than CD4+ T-cell subsets in HIV-uninfected participants, but this was not the case after HIV infection. Finally, recombinant IL-22 was protective against HIV and tumor necrosis factor-α-induced gut epithelial damage in a validated in vitro gut epithelial system. We conclude that reduced IL-22 production and Th22 depletion in the gut mucosa are important factors in HIV mucosal immunopathogenesis.
Journal of Immunology | 2013
Aisha Nazli; Jessica K. Kafka; Victor H. Ferreira; Varun C. Anipindi; Kristen Mueller; Brendan J. W. Osborne; Sara Dizzell; Sarah E. Chauvin; M. Firoz Mian; Michel Ouellet; Michel J. Tremblay; Karen L. Mossman; Ali A. Ashkar; Colin Kovacs; Dawn M. E. Bowdish; Denis P. Snider; Rupert Kaul; Charu Kaushic
Although women constitute half of all HIV-1–infected people worldwide (UNAIDS World AIDS Day Report, 2011), the earliest events in the female reproductive tract (FRT) during heterosexual HIV-1 transmission are poorly understood. Recently, we demonstrated that HIV-1 could directly impair the mucosal epithelial barrier in the FRT. This suggested that the HIV-1 envelope glycoprotein gp120 was being recognized by a membrane receptor on genital epithelial cells, leading to innate immune activation. In this study, we report that pattern-recognition receptors TLR2 and -4 bind to HIV-1 gp120 and trigger proinflammatory cytokine production via activation of NF-κB. The gp120–TLR interaction also required the presence of heparan sulfate (HS). Bead-binding assays showed that gp120 can bind to HS, TLR2, and TLR4, and studies in transfected HEK293 cells demonstrated that HS and TLR2 and -4 were necessary to mediate downstream signaling. Exposure to seminal plasma from HIV-1–infected and uninfected men with gp120 added to it induced a significant proinflammatory cytokine response from genital epithelial cells and disruption of tight junctions, indicating a role for gp120 in mucosal barrier disruption during HIV-1 heterosexual transmission. These studies provide, for the first time to our knowledge, a possible mechanism by which HIV-1 gp120 could directly initiate innate immune activation in the FRT during heterosexual transmission.
Antiviral Research | 2009
Aisha Nazli; Xiao-Dan Yao; Marek Smieja; Kenneth L. Rosenthal; Ali A. Ashkar; Charu Kaushic
Genital epithelial cells (GECs) are the first line of mucosal defense against sexually transmitted infections. We exploited the ability of GECs to mount innate immune responses, by using TLR ligands to induce anti-viral activity against Herpes simplex virus, type 2 (HSV-2). Primary cultures of GECs were grown to confluent, polarized monolayers and found to express different levels of mRNA for TLR1-10. Innate anti-viral responses against HSV-2 infection were determined following treatment with eight different TLR ligands. HSV-2 replication was significantly inhibited following treatment with ligands for TLR3, 5 and 9, while lipo-polysaccharide (LPS), a TLR4 ligand, failed to provide any protection. Biologically active interferon-beta and nitric oxide production by GECs correlated with anti-viral activity. Following treatment with TLR3 ligand Poly I:C, inflammatory cytokines were upregulated. Poly I:C treatment led to activation of downstream transcription factors including interferon regulatory factor-3 (IRF-3) and NFkappaB. Anti-viral responses induced by TLR ligands in GECs may provide a unique alternative to topical microbicides by enhancing bodys own mucosal innate defense mechanisms against sexually transmitted viruses.
Infection and Immunity | 2006
Aisha Nazli; Arthur Wang; Oren Steen; David Prescott; Jun Lu; Mary H. Perdue; Johan D. Söderholm; Philip M. Sherman; Derek M. McKay
ABSTRACT Substantial data implicate the commensal flora as triggers for the initiation of enteric inflammation or inflammatory disease relapse. We have shown that enteric epithelia under metabolic stress respond to nonpathogenic bacteria by increases in epithelial paracellular permeability and bacterial translocation. Here we assessed the structural basis of these findings. Confluent filter-grown monolayers of the human colonic T84 epithelial cell line were treated with 0.1 mM dinitrophenol (which uncouples oxidative phosphorylation) and noninvasive, nonpathogenic Escherichia coli (strain HB101, 106 CFU) with or without pretreatment with various pharmacological agents. At 24 h later, apoptosis, tight-junction protein expression, transepithelial resistance (TER; a marker of paracellular permeability), and bacterial internalization and translocation were assessed. Treatment with stabilizers of microtubules (i.e., colchicine), microfilaments (i.e., jasplakinolide) and clathrin-coated pit endocytosis (i.e., phenylarsine oxide) all failed to block DNP+E. coli HB101-induced reductions in TER but effectively prevented bacterial internalization and translocation. Neither the TER defect nor the enhanced bacterial translocations were a consequence of increased apoptosis. These data show that epithelial paracellular and transcellular (i.e., bacterial internalization) permeation pathways are controlled by different mechanisms. Thus, epithelia under metabolic stress increase their endocytotic activity that can result in a microtubule-, microfilament-dependent internalization and transcytosis of bacteria. We speculate that similar events in vivo would allow excess unprocessed antigen and bacteria into the mucosa and could evoke an inflammatory response by, for example, the activation of resident or recruited immune cells.
American Journal of Reproductive Immunology | 2010
Charu Kaushic; Vitor H. Ferreira; Jessica K. Kafka; Aisha Nazli
Citation Kaushic C, Ferreira VH, Kafka JK, Nazli A. HIV infection in the female genital tract: discrete influence of the local mucosal microenvironment. Am J Reprod Immunol 2010
The Journal of Infectious Diseases | 2011
Victor H. Ferreira; Aisha Nazli; Ghaznia Khan; M. Firoz Mian; Ali A. Ashkar; Scott Gray-Owen; Rupert Kaul; Charu Kaushic
BACKGROUND Sexually transmitted infections (STIs) are associated with increased human immunodeficiency virus type 1 (HIV-1) susceptibility and viral shedding in the genital tract, but the mechanisms underlying this association are poorly understood. METHODS Direct activation of HIV long terminal repeats (LTRs), a proxy measure for HIV-1 replication, was measured after treatment of 1G5 T cells with Toll-like receptor (TLR) ligands, herpes simplex virus type 1 or 2 (HSV-1/2), or Neisseria gonorrhoeae. For indirect activation, 1G5 T cells were incubated with supernatants from female primary genital epithelial cells (GECs) previously exposed to these agents. Proinflammatory cytokines and chemokines were measured in GEC supernatants. Proinflammatory pathways were blocked to determine the mechanisms of direct and indirect HIV-LTR activation. RESULTS HSV-1/2, N. gonorrhoeae, and TLR ligands FimH (TLR-4), flagellin (TLR-5), and Poly (I:C) (TLR-3) directly induced HIV-LTR activation in 1G5 T cells. Supernatants collected from GECs incubated with these agents indirectly induced HIV-LTR activation. Production of tumor necrosis factor α, interleukin 6, interleukin 8, and monocyte chemoattractant protein-1 was elevated in GECs exposed to copathogens. Inhibition of nuclear factor κB and activator protein-1 (AP-1) signaling pathways in 1G5 T cells abrogated both direct and indirect HIV-LTR activation. CONCLUSIONS STIs may increase HIV-1 replication in the female genital tract via proinflammatory signaling pathways directly and indirectly via their effects on GECs. This increased HIV-1 replication may enhance sexual and vertical HIV transmission.