Aiying Wang
Bristol-Myers Squibb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aiying Wang.
Journal of Medicinal Chemistry | 2008
Wei Meng; Bruce A. Ellsworth; Alexandra A. Nirschl; Peggy J. McCann; Manorama Patel; Ravindar N Girotra; Gang Wu; Philip M. Sher; Eamonn P. Morrison; Scott A. Biller; Robert Zahler; Prashant P. Deshpande; Annie Pullockaran; Deborah Hagan; Nathan Morgan; Joseph R. Taylor; Mary T. Obermeier; William G. Humphreys; Ashish Khanna; Lorell Discenza; James G. Robertson; Aiying Wang; Songping Han; John R. Wetterau; Evan B. Janovitz; Oliver P. Flint; Jean M. Whaley; William N. Washburn
The C-aryl glucoside 6 (dapagliflozin) was identified as a potent and selective hSGLT2 inhibitor which reduced blood glucose levels in a dose-dependent manner by as much as 55% in hyperglycemic streptozotocin (STZ) rats. These findings, combined with a favorable ADME profile, have prompted clinical evaluation of dapagliflozin for the treatment of type 2 diabetes.
BMC Pharmacology | 2012
Aiying Wang; Charles R. Dorso; Lisa M. Kopcho; Gregory Locke; Robert Langish; Eric. B. Harstad; Petia Shipkova; Jovita Marcinkeviciene; Lawrence G. Hamann; Mark S. Kirby
BackgroundDipeptidylpeptidase 4 (DPP4) inhibitors have clinical benefit in patients with type 2 diabetes mellitus by increasing levels of glucose-lowering incretin hormones, such as glucagon-like peptide -1 (GLP-1), a peptide with a short half life that is secreted for approximately 1 hour following a meal. Since drugs with prolonged binding to their target have been shown to maximize pharmacodynamic effects while minimizing drug levels, we developed a time-dependent inhibitor that has a half-life for dissociation from DPP4 close to the duration of the first phase of GLP-1 release.ResultsSaxagliptin and its active metabolite (5-hydroxysaxagliptin) are potent inhibitors of human DPP4 with prolonged dissociation from its active site (Ki = 1.3 nM and 2.6 nM, t1/2 = 50 and 23 minutes respectively at 37°C). In comparison, both vildagliptin (3.5 minutes) and sitagliptin ( < 2 minutes) rapidly dissociated from DPP4 at 37°C. Saxagliptin and 5-hydroxysaxagliptin are selective for inhibition of DPP4 versus other DPP family members and a large panel of other proteases, and have similar potency and efficacy across multiple species.Inhibition of plasma DPP activity is used as a biomarker in animal models and clinical trials. However, most DPP4 inhibitors are competitive with substrate and rapidly dissociate from DPP4; therefore, the type of substrate, volume of addition and final concentration of substrate in these assays can change measured inhibition. We show that unlike a rapidly dissociating DPP4 inhibitor, inhibition of plasma DPP activity by saxagliptin and 5-hydroxysaxagliptin in an ex vivo assay was not dependent on substrate concentration when substrate was added rapidly because saxagliptin and 5-hydroxysaxagliptin dissociate slowly from DPP4, once bound. We also show that substrate concentration was important for rapidly dissociating DPP4 inhibitors.ConclusionsSaxagliptin and its active metabolite are potent, selective inhibitors of DPP4, with prolonged dissociation from its active site. They also demonstrate prolonged inhibition of plasma DPP4 ex vivo in animal models, which implies that saxagliptin and 5-hydroxysaxagliptin would continue to inhibit DPP4 during rapid increases in substrates in vivo.
Bioorganic & Medicinal Chemistry Letters | 2010
Robert Paul Brigance; Wei Meng; Aberra Fura; Thomas Harrity; Aiying Wang; Robert Zahler; Mark S. Kirby; Lawrence G. Hamann
Several pyrazolo-, triazolo-, and imidazolopyrimidines were synthesized and evaluated as inhibitors of DPP4. Of these three classes of compounds, the imidazolopyrimidines displayed the greatest potency and demonstrated excellent selectivity over the other dipeptidyl peptidases. SAR evaluation for these scaffolds was described as they may represent potential treatments for type 2 diabetes.
Journal of Medicinal Chemistry | 2010
Wei Meng; Robert Paul Brigance; Hannguang J. Chao; Aberra Fura; Thomas Harrity; Jovita Marcinkeviciene; Stephen P. O'connor; James Tamura; Dianlin Xie; Yaqun Zhang; Herbert E. Klei; Kevin Kish; Carolyn Weigelt; Huji Turdi; Aiying Wang; Robert Zahler; Mark S. Kirby; Lawrence G. Hamann
Continued structure-activity relationship (SAR) exploration within our previously disclosed azolopyrimidine containing dipeptidyl peptidase-4 (DPP4) inhibitors led us to focus on an imidazolopyrimidine series in particular. Further study revealed that by replacing the aryl substitution on the imidazole ring with a more polar carboxylic ester or amide, these compounds displayed not only increased DPP4 binding activity but also significantly reduced human ether-a-go-go related gene (hERG) and sodium channel inhibitory activities. Additional incremental adjustment of polarity led to permeable molecules which exhibited favorable pharmacokinetic (PK) profiles in preclinical animal species. The active site binding mode of these compounds was determined by X-ray crystallography as exemplified by amide 24c. A subsequent lead molecule from this series, (+)-6-(aminomethyl)-5-(2,4-dichlorophenyl)-N-(1-ethyl-1H-pyrazol-5-yl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamide (24s), emerged as a potent, selective DPP4 inhibitor that displayed excellent PK profiles and in vivo efficacy in ob/ob mice.
Journal of Medicinal Chemistry | 2013
Pratik Devasthale; Ying Wang; Wei Wang; John Matthew Fevig; Jianxin Feng; Aiying Wang; Tom Harrity; Don Egan; Nathan Morgan; Michael Cap; Aberra Fura; Herbert E. Klei; Kevin Kish; Carolyn Weigelt; Lucy Sun; Paul Levesque; Frederic Moulin; Yi-Xin Li; Robert Zahler; Mark S. Kirby; Lawrence G. Hamann
Optimization of a 5-oxopyrrolopyridine series based upon structure-activity relationships (SARs) developed from our previous efforts on a number of related bicyclic series yielded compound 2s (BMS-767778) with an overall activity, selectivity, efficacy, PK, and developability profile suitable for progression into the clinic. SAR in the series and characterization of 2s are described.
Bioorganic & Medicinal Chemistry Letters | 2010
Stephen P. O’Connor; Ying Wang; Ligaya M. Simpkins; Robert Paul Brigance; Wei Meng; Aiying Wang; Mark S. Kirby; Carolyn A. Weigelt; Lawrence G. Hamann
The synthesis and SAR of aminomethyl-substituted imidazolopyrimidine DPP4 inhibitors bearing varied pendant aryl groups is described. Compound 1, which exists as a separable mixture of non-interconvertible atropisomers was used as the starting point for investigation. The effects of substituent pattern and type as well as stereochemical effects on inhibitor potency are discussed.
Bioorganic & Medicinal Chemistry Letters | 2013
Guohua Zhao; Chet Kwon; Aiying Wang; James G. Robertson; Jovita Marcinkeviciene; Rex A. Parker; Mark S. Kirby; Lawrence G. Hamann
Synthesis and structure-activity relationship of a series of substituted piperidinyl glycine 2-cyano-4,5-methano pyrroline DPP-IV inhibitors are described. Improvement of the inhibitory activity and chemical stability of this series of compounds was respectively achieved by the introduction of bulky groups at the 4-position and 1-position of the piperidinyl glycine, leading to a series of potent and stable DPP-IV inhibitors.
Bioorganic & Medicinal Chemistry Letters | 2011
Wei Wang; Pratik Devasthale; Aiying Wang; Tom Harrity; Don Egan; Nathan Morgan; Michael Cap; Aberra Fura; Herbert E. Klei; Kevin Kish; Carolyn A. Weigelt; Lucy Sun; Paul Levesque; Yi-Xin Li; Robert Zahler; Mark S. Kirby; Lawrence G. Hamann
Design, synthesis, and SAR of 7-oxopyrrolopyridine-derived DPP4 inhibitors are described. The preferred stereochemistry of these atropisomeric biaryl analogs has been identified as Sa. Compound (+)-3t, with a K(i) against DPP4, DPP8, and DPP9 of 0.37 nM, 2.2, and 5.7 μM, respectively, showed a significant improvement in insulin response after single doses of 3 and 10 μmol/kg in ob/ob mice.
Analytical Biochemistry | 2003
Aiying Wang; Yanting Huang; Prakash Taunk; David R. Magnin; Krishnendu Ghosh; James G. Robertson
Using available commercial robotics and instrumentation, we developed a fully automated and rigorous steady state enzyme kinetic assay for dipeptidyl peptidase IV (DPP IV; E.C. 3.4.14.5). The automated assay was validated with isoleucyl thiazolidide, a potent inhibitor of DPP IV with K(is)=110nM. Signal window analysis indicated that the assay had a 98% probability of detecting an inhibitor yielding 15% inhibition, with a predicted false positive rate of 0.13%. A mechanistic inhibition version of the automated assay was validated with isoleucyl 4-cyanothiazolidide, a very potent inhibitor of DPP IV. Isoleucyl 4-cyanothiazolidide was a competitive inhibitor of purified porcine DPP IV with K(is)=1 nM. Similar K(is) values were obtained for purified rat DPP IV and for DPP IV activity in human plasma from normal and diabetic donors. The pH dependence of K(is) for isoleucyl 4-cyanothiazolidide yielded a bell-shaped profile, with pK(a)=5.0 and pK(b)=7.6. To date, over 100,000 data points have been generated in profiling targeted compound libraries and in the analysis of tight-binding inhibitors of DPP IV. The data also show that robotic analysis is capable of producing full mechanistic inhibition analysis in a timely fashion to support drug discovery.
Journal of Medicinal Chemistry | 2005
David J. Augeri; Jeffrey A. Robl; David A. Betebenner; David R. Magnin; Ashish Khanna; James G. Robertson; Aiying Wang; Ligaya M. Simpkins; Prakash Taunk; Qi Huang; Songping Han; Benoni E. Abboa-Offei; Michael Cap; Li Xin; Li Tao; Effie Tozzo; Gustav Welzel; Donald M. Egan; Jovita Marcinkeviciene; Shu Y. Chang; Scott A. Biller; Mark S. Kirby; Rex A. Parker; Lawrence G. Hamann