Robert Zahler
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Zahler.
Journal of Medicinal Chemistry | 2008
Wei Meng; Bruce A. Ellsworth; Alexandra A. Nirschl; Peggy J. McCann; Manorama Patel; Ravindar N Girotra; Gang Wu; Philip M. Sher; Eamonn P. Morrison; Scott A. Biller; Robert Zahler; Prashant P. Deshpande; Annie Pullockaran; Deborah Hagan; Nathan Morgan; Joseph R. Taylor; Mary T. Obermeier; William G. Humphreys; Ashish Khanna; Lorell Discenza; James G. Robertson; Aiying Wang; Songping Han; John R. Wetterau; Evan B. Janovitz; Oliver P. Flint; Jean M. Whaley; William N. Washburn
The C-aryl glucoside 6 (dapagliflozin) was identified as a potent and selective hSGLT2 inhibitor which reduced blood glucose levels in a dose-dependent manner by as much as 55% in hyperglycemic streptozotocin (STZ) rats. These findings, combined with a favorable ADME profile, have prompted clinical evaluation of dapagliflozin for the treatment of type 2 diabetes.
Journal of Medicinal Chemistry | 2008
Saleem Ahmad; Cort S. Madsen; Philip D. Stein; Evan B. Janovitz; Christine Huang; Khehyong Ngu; Sharon N. Bisaha; Lawrence J. Kennedy; Bang-Chi Chen; Rulin Zhao; Doree Sitkoff; Hossain Monshizadegan; Xiaohong Yin; Carol S. Ryan; Rongan Zhang; Mary R. Giancarli; Eileen Bird; Ming Chang; Xing Chen; Robert Setters; Debra Search; Shaobin Zhuang; Van Nguyen-Tran; Carolyn A. Cuff; Thomas Harrity; Celia D'Arienzo; Tong Li; Richard A. Reeves; Michael A. Blanar; Joel C. Barrish
3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) inhibitors, more commonly known as statins, represent the gold standard in treating hypercholesterolemia. Although statins are regarded as generally safe, they are known to cause myopathy and, in rare cases, rhabdomyolysis. Statin-dependent effects on plasma lipids are mediated through the inhibition of HMGR in the hepatocyte, whereas evidence suggests that myotoxicity is due to inhibition of HMGR within the myocyte. Thus, an inhibitor with increased selectivity for hepatocytes could potentially result in an improved therapeutic window. Implementation of a strategy that focused on in vitro potency, compound polarity, cell selectivity, and oral absorption, followed by extensive efficacy and safety modeling in guinea pig and rat, resulted in the identification of compound 1b (BMS-644950). Using this discovery pathway, we compared 1b to other marketed statins to demonstrate its outstanding efficacy and safety profile. With the potential to generate an excellent therapeutic window, 1b was advanced into clinical development.
Journal of Medicinal Chemistry | 2010
Jun Li; Lawrence J. Kennedy; Yan Shi; Shiwei Tao; Xiang-Yang Ye; Stephanie Y. Chen; Ying Wang; Andres S. Hernandez; Wei Wang; Pratik Devasthale; Sean Chen; Zhi Lai; Hao Zhang; Shung Wu; Rebecca A. Smirk; Scott A. Bolton; Denis E. Ryono; Huiping Zhang; Ngiap-Kie Lim; Bang-Chi Chen; Kenneth T. Locke; Kevin O’Malley; Litao Zhang; Rai Ajit Srivastava; Bowman Miao; Daniel Meyers; Hossain Monshizadegan; Debra Search; Denise Grimm; Rongan Zhang
An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARalpha ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARalpha in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.
Journal of Medicinal Chemistry | 2010
Wei Meng; Robert Paul Brigance; Hannguang J. Chao; Aberra Fura; Thomas Harrity; Jovita Marcinkeviciene; Stephen P. O'connor; James Tamura; Dianlin Xie; Yaqun Zhang; Herbert E. Klei; Kevin Kish; Carolyn Weigelt; Huji Turdi; Aiying Wang; Robert Zahler; Mark S. Kirby; Lawrence G. Hamann
Continued structure-activity relationship (SAR) exploration within our previously disclosed azolopyrimidine containing dipeptidyl peptidase-4 (DPP4) inhibitors led us to focus on an imidazolopyrimidine series in particular. Further study revealed that by replacing the aryl substitution on the imidazole ring with a more polar carboxylic ester or amide, these compounds displayed not only increased DPP4 binding activity but also significantly reduced human ether-a-go-go related gene (hERG) and sodium channel inhibitory activities. Additional incremental adjustment of polarity led to permeable molecules which exhibited favorable pharmacokinetic (PK) profiles in preclinical animal species. The active site binding mode of these compounds was determined by X-ray crystallography as exemplified by amide 24c. A subsequent lead molecule from this series, (+)-6-(aminomethyl)-5-(2,4-dichlorophenyl)-N-(1-ethyl-1H-pyrazol-5-yl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamide (24s), emerged as a potent, selective DPP4 inhibitor that displayed excellent PK profiles and in vivo efficacy in ob/ob mice.
Journal of Medicinal Chemistry | 2009
Alexandra A. Nirschl; Yan Zou; Stanley R. Krystek; James C. Sutton; Ligaya M. Simpkins; John A. Lupisella; Joyce E. Kuhns; Ramakrishna Seethala; Rajasree Golla; Paul G. Sleph; Blake C. Beehler; Gary J. Grover; Donald Egan; Aberra Fura; Viral Vyas; Yi-Xin Li; John S. Sack; Kevin Kish; Yongmi An; James A. Bryson; Jack Z. Gougoutas; John D. Dimarco; Robert Zahler; Jacek Ostrowski; Lawrence G. Hamann
A novel selective androgen receptor modulator (SARM) scaffold was discovered as a byproduct obtained during synthesis of our earlier series of imidazolidin-2-ones. The resulting oxazolidin-2-imines are among the most potent SARMs known, with many analogues exhibiting sub-nM in vitro potency in binding and functional assays. Despite the potential for hydrolytic instability at gut pH, compounds of the present class showed good oral bioavailability and were highly active in a standard rodent pharmacological model.
Journal of Medicinal Chemistry | 2013
Pratik Devasthale; Ying Wang; Wei Wang; John Matthew Fevig; Jianxin Feng; Aiying Wang; Tom Harrity; Don Egan; Nathan Morgan; Michael Cap; Aberra Fura; Herbert E. Klei; Kevin Kish; Carolyn Weigelt; Lucy Sun; Paul Levesque; Frederic Moulin; Yi-Xin Li; Robert Zahler; Mark S. Kirby; Lawrence G. Hamann
Optimization of a 5-oxopyrrolopyridine series based upon structure-activity relationships (SARs) developed from our previous efforts on a number of related bicyclic series yielded compound 2s (BMS-767778) with an overall activity, selectivity, efficacy, PK, and developability profile suitable for progression into the clinic. SAR in the series and characterization of 2s are described.
Bioorganic & Medicinal Chemistry Letters | 2013
Scott A. Bolton; James Sutton; Rushith Anumula; Gregory S. Bisacchi; Bruce L. Jacobson; William A. Slusarchyk; Uwe D. Treuner; Shung C. Wu; Guohua Zhao; Zulan Pi; Steven Sheriff; Rebecca A. Smirk; Sharon N. Bisaha; Daniel L. Cheney; Anzhi Wei; William A. Schumacher; Karen S. Hartl; Eddie C.-K. Liu; Robert Zahler; Steven M. Seiler
In this Letter, we describe the synthesis of several nonamidine analogs of biaryl acid factor VIIa inhibitor 1 containing weakly basic or nonbasic P1 groups. 2-Aminoisoquinoline was found to be an excellent surrogate for the benzamidine group (compound 2) wherein potent inhibition of factor VIIa is maintained relative to most other related serine proteases. In an unanticipated result, the m-benzamide P1 (compounds 21a and 21b) proved to be a viable benzamidine replacement, albeit with a 20-40 fold loss in potency against factor VIIa.
ACS Medicinal Chemistry Letters | 2016
Yan Shi; Jun Li; Lawrence J. Kennedy; Shiwei Tao; Andres S. Hernandez; Zhi Lai; Sean Chen; Henry Wong; Juliang Zhu; Ashok Trehan; Ngiap-Kie Lim; Huiping Zhang; Bang-Chi Chen; Kenneth T. Locke; Kevin O’Malley; Litao Zhang; Rai Ajit Srivastava; Bowman Miao; Daniel Meyers; Hossain Monshizadegan; Debra Search; Denise Grimm; Rongan Zhang; Thomas Harrity; Lori Kunselman; Michael Cap; Jodi K. Muckelbauer; Chiehying Chang; Stanley R. Krystek; Yi-Xin Li
BMS-711939 (3) is a potent and selective peroxisome proliferator-activated receptor (PPAR) α agonist, with an EC50 of 4 nM for human PPARα and >1000-fold selectivity vs human PPARγ (EC50 = 4.5 μM) and PPARδ (EC50 > 100 μM) in PPAR-GAL4 transactivation assays. Compound 3 also demonstrated excellent in vivo efficacy and safety profiles in preclinical studies and thus was chosen for further preclinical evaluation. The synthesis, structure-activity relationship (SAR) studies, and in vivo pharmacology of 3 in preclinical animal models as well as its ADME profile are described.
Journal of the American Chemical Society | 1990
David A. Evans; Robert L. Dow; Thomas L. Shih; J. M. Takacs; Robert Zahler
Archive | 1993
Eric M. Gordon; Joel C. Barrish; Gregory S. Bisacchi; Chongqing Sun; Joseph A. Tino; Gregory D. Vite; Robert Zahler