Ajanthy Arulpragasam
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ajanthy Arulpragasam.
Gene Therapy | 2006
Sarah G Leaver; Qi Cui; Gary W Plant; Ajanthy Arulpragasam; S Hisheh; Joost Verhaagen; Alan R. Harvey
We compared the effects of intravitreal injection of bi-cistronic adeno-associated viral (AAV-2) vectors encoding enhanced green fluorescent protein (GFP) and either ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43) on adult retinal ganglion cell (RGC) survival and regeneration following (i) optic nerve (ON) crush or (ii) after ON cut and attachment of a peripheral nerve (PN). At 7 weeks after ON crush, quantification of βIII-tubulin immunostaining revealed that, compared to AAV-GFP controls, RGC survival was not enhanced by AAV-GAP43-GFP but was increased in AAV-CNTF-GFP (mean RGCs/retina: 17 450±358 s.e.m.) and AAV-BDNF-GFP injected eyes (10 200±4064 RGCs/retina). Consistent with increased RGC viability in AAV-CNTF-GFP and AAV-BDNF-GFP injected eyes, these animals possessed many βIII-tubulin- and GFP-positive fibres proximal to the ON crush. However, only in the AAV-CNTF-GFP group were regenerating RGC axons seen in distal ON (1135±367 axons/nerve, 0.5 mm post-crush), some reaching the optic chiasm. RGCs were immunoreactive for CNTF and quantitative RT-PCR revealed a substantial increase in CNTF mRNA expression in retinas transduced with AAV-CNTF-GFP. The combination of AAV-CNTF-GFP transduction of RGCs with autologous PN-ON transplantation resulted in even greater RGC survival and regeneration. At 7 weeks after PN transplantation there were 27 954 (±2833) surviving RGCs/retina, about 25% of the adult RGC population. Of these, 13 352 (±1868) RGCs/retina were retrogradely labelled after fluorogold injections into PN grafts. In summary, AAV-mediated expression of CNTF promotes long-term survival and regeneration of injured adult RGCs, effects that are substantially enhanced by combining gene and cell-based therapies/interventions.
Journal of Biological Chemistry | 2004
Neville J. Butcher; Ajanthy Arulpragasam; Rodney F. Minchin
Many drugs and chemicals found in the environment are either detoxified by N-acetyltransferase 1 (NAT1, EC 2.3.1.5) and eliminated from the body or bioactivated to metabolites that have the potential to cause toxicity and/or cancer. NAT1 activity in the body is regulated by genetic polymorphisms as well as environmental factors such as substrate-dependent down-regulation and oxidative stress. Here we report the molecular mechanism for the low protein expression from mutant NAT1 alleles that gives rise to the slow acetylator phenotype and show that a similar process accounts for enzyme down-regulation by NAT1 substrates. NAT1 allozymes NAT1 14, NAT1 15, NAT1 17, and NAT1 22 are devoid of enzyme activity and have short intracellular half-lives (∼4 h) compared with wild-type NAT1 4 and the active allozyme NAT1 24. The inactive allozymes are unable to be acetylated by cofactor, resulting in ubiquitination and rapid degradation by the 26 S proteasome. This was confirmed by site-directed mutagenesis of the active site cysteine 68. The NAT1 substrate p-aminobenzoic acid induced ubiquitination of the usually stable NAT1 4, leading to its rapid degradation. From this study, we conclude that NAT1 exists in the cell in either a stable acetylated state or an unstable non-acetylated state and that mutations in the NAT1 gene that prevent protein acetylation produce a slow acetylator phenotype.
Experimental Neurology | 2007
Ying Hu; Ajanthy Arulpragasam; Giles W. Plant; William T. Hendriks; Qi Cui; Alan R. Harvey
When grafted onto the cut optic nerve, chimeric peripheral nerve (PN) sheaths reconstituted with adult Schwann cells (SCs) support the regeneration of adult rat retinal ganglion cell (RGC) axons. Regrowth can be further enhanced by using PN containing SCs transduced ex vivo with lentiviral (LV) vectors encoding a secretable form of ciliary neurotrophic factor (CNTF). To determine whether other neurotrophic factors or different cell types also enhance RGC regrowth in this bridging model, we tested the effectiveness of (1) adult SCs transduced with brain-derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor (GDNF), and (2) fibroblasts (FBs) genetically modified to express CNTF. SCs transduced with LV-BDNF and LV-GDNF secreted measurable and bioactive amounts of each of these proteins, but reconstituted grafts containing LV-BDNF or LV-GDNF transduced SCs did not enhance RGC survival or axonal regrowth. LV-BDNF modified grafts did, however, contain many pan-neurofilament immunolabeled axons, many of which were also immunoreactive for calcitonin gene-related peptide (CGRP) and were presumably of peripheral sensory origin. Nor-adrenergic and cholinergic axons were also seen in these grafts. There were far fewer axons in LV-GDNF engineered grafts. Reconstituted PN sheaths containing FBs that had been modified to express CNTF did not promote RGC viability or regeneration, and PN reconstituted with a mixed population of SCs and CNTF expressing FBs were less effective than SCs alone. These data show that both the type of neurotrophic factor and the cell types that express these factors are crucial elements when designing bridging substrates to promote long-distance regeneration in the injured CNS.
Biochemical Journal | 2012
Ajanthy Arulpragasam; Aaron L. Magno; Evan Ingley; Suzanne J. Brown; Arthur D. Conigrave; Thomas Ratajczak; Bryan K. Ward
A yeast two-hybrid screen performed to identify binding partners of the CaR (calcium-sensing receptor) intracellular tail identified the adaptor protein 14-3-3θ as a novel binding partner that bound to the proximal membrane region important for CaR expression and signalling. The 14-3-3θ protein directly interacted with the CaR tail in pull-down studies and FLAG-tagged CaR co-immunoprecipitated with EGFP (enhanced green fluorescent protein)-tagged 14-3-3θ when co-expressed in HEK (human embryonic kidney)-293 or COS-1 cells. The interaction between the CaR and 14-3-3θ did not require a putative binding site in the membrane-proximal region of the CaR tail and was independent of PKC (protein kinase C) phosphorylation. Confocal microscopy demonstrated co-localization of the CaR and EGFP-14-3-3θ in the ER (endoplasmic reticulum) of HEK-293 cells that stably expressed the CaR (HEK-293/CaR cells), but 14-3-3θ overexpression had no effect on membrane expression of the CaR. Overexpression of 14-3-3θ in HEK-293/CaR cells attenuated CaR-mediated Rho signalling, but had no effect on ERK (extracellular-signal-regulated kinase) 1/2 signalling. Another isoform identified from the library, 14-3-3ζ, exhibited similar behaviour to that of 14-3-3θ with respect to CaR tail binding, cellular co-localization and impact on receptor-mediated signalling. However, unlike 14-3-3θ, this isoform, when overexpressed, significantly reduced CaR plasma membrane expression. Results indicate that 14-3-3 proteins mediate CaR-dependent Rho signalling and may modulate the plasma membrane expression of the CaR.
Molecular Endocrinology | 2013
Carmel Cluning; Bryan K. Ward; Sarah L. Rea; Ajanthy Arulpragasam; Peter J. Fuller; Thomas Ratajczak
The heat-shock protein 90 (Hsp90) cochaperone FK506-binding protein 52 (FKBP52) upregulates, whereas FKBP51 inhibits, hormone binding and nuclear targeting of the glucocorticoid receptor (GR). Decreased cortisol sensitivity in the guinea pig is attributed to changes within the helix 1 to helix 3 (H1-H3) loop of the guinea pig GR (gpGR) ligand-binding domain. It has been proposed that this loop serves as a contact point for FKBP52 and/or FKBP51 with receptor. We examined the role of the H1-H3 loop in GR activation by FKBP52 using a Saccharomyces cerevisiae model. The activity of rat GR (rGR) containing the gpGR H1-H3 loop substitutions was still potentiated by FKBP52, confirming the loop is not involved in primary FKBP52 interactions. Additional assays also excluded a role for other intervening loops between ligand-binding domain helices in direct interactions with FKBP52 associated with enhanced receptor activity. Complementary studies in FKBP51-deficient mouse embryo fibroblasts and HEK293 cells demonstrated that substitution of the gpGR H1-H3 loop residues into rGR dramatically increased receptor repression by FKBP51 without enhancing receptor-FKBP51 interaction and did not alter recruitment of endogenous Hsp90 and the p23 cochaperone to receptor complexes. FKBP51 suppression of the mutated rGR did not require FKBP51 peptidylprolyl cis-trans isomerase activity and was not disrupted by mutation of the FK1 proline-rich loop thought to mediate reciprocal FKBP influences on receptor activity. We conclude that the gpGR-specific mutations within the H1-H3 loop confer global changes within the GR-Hsp90 complex that favor FKBP51 repression over FKBP52 potentiation, thus identifying the loop as an important target for GR regulation by the FKBP cochaperones.
International Journal of Cancer | 2006
Rodney F. Minchin; Samuel Knight; Ajanthy Arulpragasam; Mirjana Fogel-Petrovic
N1, N11‐Diethylnorspermine (DENSPM) is a polyamine analog that is currently under investigation as a novel anticancer drug. Although it has shown promising preclinical activity, there has been large variation in responsiveness reported between different human cancers. During our studies into the causes of this variation, we observed a consistent increase in cell proliferation at low drug concentrations (<10 μM) in human melanoma cells resistant to the drug. At higher concentrations, growth inhibition was seen in all cell lines, with IC50 values ranging 2–180 μM. We hypothesized that DENSPM may mimic endogenous polyamines at low concentrations, supporting cell growth in resistant lines. We also observed that DENSPM downregulated polyamine transport in a manner similar to that for spermidine, a finding that confirms previous reports. Finally, DENSPM could rescue cells from growth arrest by the ornithine decarboxylase inhibitor difluoromethylornithine, which depletes intracellular polyamines. Taken together, these results suggest that DENSPM, at clinically relevant concentrations, can mimic endogenous polyamines and induce proliferation in resistant human melanoma cells.
Journal of Cellular Physiology | 2018
Bryan K. Ward; Sarah L. Rea; Aaron L. Magno; Bernadette Pedersen; Suzanne J. Brown; Shelby Mullin; Ajanthy Arulpragasam; Evan Ingley; Arthur D. Conigrave; Thomas Ratajczak
The mechanisms responsible for the processing and quality control of the calcium‐sensing receptor (CaSR) in the endoplasmic reticulum (ER) are largely unknown. In a yeast two‐hybrid screen of the CaSR C‐terminal tail (residues 865–1078), we identified osteosarcoma‐9 (OS‐9) protein as a binding partner. OS‐9 is an ER‐resident lectin that targets misfolded glycoproteins to the ER‐associated degradation (ERAD) pathway through recognition of specific N‐glycans by its mannose‐6‐phosphate receptor homology (MRH) domain. We show by confocal microscopy that the CaSR and OS‐9 co‐localize in the ER in COS‐1 cells. In immunoprecipitation studies with co‐expressed OS‐9 and CaSR, OS‐9 specifically bound the immature form of wild‐type CaSR in the ER. OS‐9 also bound the immature forms of a CaSR C‐terminal deletion mutant and a C677A mutant that remains trapped in the ER, although binding to neither mutant was favored over wild‐type receptor. OS‐9 binding to immature CaSR required the MRH domain of OS‐9 indicating that OS‐9 acts as a lectin most likely to target misfolded CaSR to ERAD. Our results also identify two distinct binding interactions between OS‐9 and the CaSR, one involving both C‐terminal domains of the two proteins and the other involving both N‐terminal domains. This suggests the possibility of more than one functional interaction between OS‐9 and the CaSR. When we investigated the functional consequences of altered OS‐9 expression, neither knockdown nor overexpression of OS‐9 was found to have a significant effect on CaSR cell surface expression or CaSR‐mediated ERK1/2 phosphorylation.
Biochemical Journal | 2005
Neville J. Butcher; Ajanthy Arulpragasam; Hui Li Goh; Tamara Davey; Rodney F. Minchin
Biochemical Journal | 2003
Neville J. Butcher; Ajanthy Arulpragasam; Catherine Pope; Rodney F. Minchin
Nature Neuroscience | 2009
Jana Vukovic; Marc J. Ruitenberg; Kasper C. D. Roet; Elske H. P. Franssen; Ajanthy Arulpragasam; Takako Sasaki; Joost Verhaagen; Alan R. Harvey; Samantha J. Busfield; Giles W. Plant