Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ajay Pillarisetti is active.

Publication


Featured researches published by Ajay Pillarisetti.


Global Health Action | 2012

Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions

Rupak Mukhopadhyay; Sankar Sambandam; Ajay Pillarisetti; Darby Jack; Krishnendu Mukhopadhyay; Kalpana Balakrishnan; Mayur Vaswani; Michael N. Bates; Patrick L. Kinney; Narendra K. Arora; Kirk R. Smith

BACKGROUND In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. METHODS Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. RESULTS Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. CONCLUSIONS The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested, participants expressed satisfaction with the Philips brand as it met the local criteria for usability. Further understanding of how the introduction of an advanced stove influences patterns of household energy use is needed. The preliminary data provided here would be useful for designing feasibility and/or pilot studies aimed at intervention efforts locally and nationally.Background : In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. Methods : Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. Results : Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. Conclusions : The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested, participants expressed satisfaction with the Philips brand as it met the local criteria for usability. Further understanding of how the introduction of an advanced stove influences patterns of household energy use is needed. The preliminary data provided here would be useful for designing feasibility and/or pilot studies aimed at intervention efforts locally and nationally.


Environmental Science & Technology | 2014

Patterns of stove usage after introduction of an advanced cookstove: the long-term application of household sensors.

Ajay Pillarisetti; Mayur Vaswani; Darby Jack; Kalpana Balakrishnan; Michael N. Bates; Narendra K. Arora; Kirk R. Smith

Household air pollution generated from solid fuel use for cooking is one of the leading risk factors for ill-health globally. Deployment of advanced cookstoves to reduce emissions has been a major focus of intervention efforts. However, household usage of these stoves and resulting changes in usage of traditional polluting stoves is not well characterized. In Palwal District, Haryana, India, we carried out an intervention utilizing the Philips HD4012 fan-assisted stove, one of the cleanest biomass stoves available. We placed small, unobtrusive data-logging iButton thermometers on both the traditional and Philips stoves to collect continuous data on use patterns in 200 homes over 60 weeks. Intervention stove usage declined steadily over time and stabilized after approximately 200 days; use of the traditional stove remained relatively constant. We additionally evaluated how well short-duration usage measures predicted long-term use. Measuring usage over time of both traditional and intervention stoves provides better understanding of cooking behaviors and can lead to more precise quantification of potential exposure reductions and consequent health benefits attributable to interventions.


Energy for Sustainable Development | 2018

Clean cooking and the SDGs: Integrated analytical approaches to guide energy interventions for health and environment goals

Joshua Rosenthal; Ashlinn Quinn; Andrew P. Grieshop; Ajay Pillarisetti; Roger I. Glass

Development and implementation of clean cooking technology for households in low and middle income countries (LMICs) offer enormous promise to advance at least five Sustainable Development Goals (SDGs): 3. Good health and well-being; 5. Gender equality; 7. Affordable and clean energy; 13. Climate action; 15. Life on land. Programs are being implemented around the world to introduce alternative cooking technologies, and we are well on the way to achieving the goal set by the Global Alliance for Clean Cookstoves to reach 100 million homes with cleaner and more efficient cooking methods by 2020. Despite evidence that household air pollution (HAP) from solid fuel combustion is responsible for 3–4 million early deaths per year, many cookstove programs are motivated and/or financed by climate change mitigation schemes and deploy alternative stoves that use solid fuels such as wood and charcoal. However, recent studies have demonstrated that improved biomass-burning stoves typically only incrementally improve air quality and yield modest or minimal health benefits. Likewise, their contributions to climate change mitigation and other SDGs may be limited. Evidence indicates that cleaner fuels, such as liquefied petroleum gas (LPG), ethanol and biogas, offer greater potential benefits not only to health, but also greater progress towards climate goals and other relevant SDGs. We present a modeled estimate of these potential gains for a diverse group of 40 LMICs. Our model suggests that cookstove programs using LPG stoves and fuel will yield greater reductions in both Disability Adjusted Life Years and Global Warming Commitment in these countries than those using improved biomass stoves. Cost and infrastructure requirements for clean fuels such as LPG are widely recognized constraints. In view of these constraints we present an analytical method to simultaneously consider health and climate needs at the national level for the same 40 countries in the context of estimated LPG expansion potentials. Comparative analyses integrating priorities across SDGs at the national and regional levels may guide more practical and effective household energy development choices going forward.


Environment International | 2017

The health burden and economic costs averted by ambient PM 2.5 pollution reductions in Nagpur, India

Tunde O. Etchie; Saravanadevi Sivanesan; Gregory Olufemi Adewuyi; K. Krishnamurthi; Padma S. Rao; Ayotunde Titilayo Etchie; Ajay Pillarisetti; Narendra K. Arora; Kirk R. Smith

National estimates of the health and economic burdens of exposure to ambient fine particulate matter (PM2.5) in India reveal substantial impacts. This information, often lacking at the local level, can justify and drive mitigation interventions. Here, we assess the health and economic gains resulting from attainment of WHO guidelines for PM2.5 concentrations - including interim target 2 (IT-2), interim target 3 (IT-3), and the WHO air quality guideline (AQG) - in Nagpur district to inform policy decision making for mitigation. We conducted a detailed assessment of concentrations of PM2.5 in 9 areas, covering urban, peri-urban and rural environments, from February 2013 to June 2014. We used a combination of hazard and survival analyses based on the life table method to calculate attributed annual number of premature deaths and disability-adjusted life years (DALYs) for five health outcomes linked to PM2.5 exposure: acute lower respiratory infection for children <5years, ischemic heart disease, chronic obstructive pulmonary disease, stroke and lung cancer in adults ≥25years. We used GBD 2013 data on deaths and DALYs for these diseases. We calculated averted deaths, DALYs and economic loss resulting from planned reductions in average PM2.5 concentration from current level to IT-2, IT-3 and AQG by the years 2023, 2033 and 2043, respectively. The economic cost for premature mortality was estimated as the product of attributed deaths and value of statistical life for India, while morbidity was assumed to be 10% of the mortality cost. The annual average PM2.5 concentration in Nagpur district is 34±17μgm-3 and results in 3.3 (95% confidence interval [CI]: 2.6, 4.2) thousand premature deaths and 91 (95% CI: 68, 116) thousand DALYs in 2013 with economic loss of USD 2.2 (95% CI: 1.7, 2.8) billion in that year. It is estimated that interventions that achieve IT-2, IT-3 and AQG by 2023, 2033 and 2043, would avert, respectively, 15, 30 and 36%, of the attributed health and economic loss in those years, translating into an impressively large health and economic gain. To achieve this, we recommend an exposure-integrated source reduction approach.


Environmental Science & Technology | 2016

Use of Temperature Sensors to Determine Exclusivity of Improved Stove Use and Associated Household Air Pollution Reductions in Kenya

Matthew Lozier; Kanta Sircar; Bryan Christensen; Ajay Pillarisetti; David Pennise; Nigel Bruce; Debbi Stanistreet; Luke P. Naeher; Tamara Pilishvili; Jennifer L. Farrar; Michael Sage; Ronald Nyagol; Justus Muoki; Todd Wofchuck; Fuyuen Yip

Household air pollution (HAP) contributes to 3.5-4 million annual deaths globally. Recent interventions using improved cookstoves (ICS) to reduce HAP have incorporated temperature sensors as stove use monitors (SUMs) to assess stove use. We deployed SUMs in an effectiveness study of 6 ICSs in 45 Kenyan rural homes. Stove were installed sequentially for 2 weeks and kitchen air monitoring was conducted for 48 h during each 2-week period. We placed SUMs on the ICSs and traditional cookstoves (TCS), and the continuous temperature data were analyzed using an algorithm to examine the number of cooking events, days of exclusive use of ICS, and how stove use patterns affect HAP. Stacking, defined as using both a TCS and an ICS in the same day, occurred on 40% of the study days, and exclusive use of the ICS occurred on 25% of study days. When researchers were not present, ICS use declined, which can have implications for long-term stove adoption in these communities. Continued use of TCSs was also associated with higher HAP levels. SUMs are a valuable tool for characterizing stove use and provide additional information to interpret HAP levels measured during ICS intervention studies.


Archive | 2016

HAPIT, the Household Air Pollution Intervention Tool, to Evaluate the Health Benefits and Cost-Effectiveness of Clean Cooking Interventions

Ajay Pillarisetti; Sumi Mehta; Kirk R. Smith

There is a growing focus on interventions seeking to reduce the burden of disease associated with household air pollution. HAPIT provides policy-makers and program implementers an easy-to-use tool by which to compare the relative merits of programs both within and between countries, helping assist with optimization of limited resources. Although a number of uncertainties remain, HAPIT represents the ‘state of the science’ and relies on the best available knowledge – and is built to easily integrate new knowledge and findings to better hone estimates.


Sensors | 2017

Small, Smart, Fast, and Cheap: Microchip-Based Sensors to Estimate Air Pollution Exposures in Rural Households

Ajay Pillarisetti; Tracy Allen; Ilse Ruiz-Mercado; Rufus Edwards; Zohir Chowdhury; Charity Garland; L. Hill; Michael P. Johnson; Charles D. Litton; Nicholas L. Lam; David Pennise; Kirk R. Smith

Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley—in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions—has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO2-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them.


Indoor Air | 2018

Monitoring and Modeling of Household Air Quality Related to Use of Different Cookfuels in Paraguay

Matías Tagle; Ajay Pillarisetti; Maria T. Hernandez; Karin Troncoso; Agnes Soares; Ricardo Torres; Aida Galeano; Pedro Oyola; John R. Balmes; Kirk R. Smith

Abstract In Paraguay, 49% of the population depends on biomass (wood and charcoal) for cooking. Residential biomass burning is a major source of fine particulate matter (PM 2.5) and carbon monoxide (CO) in and around the household environment. In July 2016, cross‐sectional household air pollution sampling was conducted in 80 households in rural Paraguay. Time‐integrated samples (24 hours) of PM 2.5 and continuous CO concentrations were measured in kitchens that used wood, charcoal, liquefied petroleum gas (LPG), or electricity to cook. Qualitative and quantitative household‐level variables were captured using questionnaires. The average PM 2.5 concentration (μg/m3) was higher in kitchens that burned wood (741.7 ± 546.4) and charcoal (107.0 ± 68.6) than in kitchens where LPG (52.3 ± 18.9) or electricity (52.0 ± 14.8) was used. Likewise, the average CO concentration (ppm) was higher in kitchens that used wood (19.4 ± 12.6) and charcoal (7.6 ± 6.5) than in those that used LPG (0.5 ± 0.6) or electricity (0.4 ± 0.6). Multivariable linear regression was conducted to generate predictive models for indoor PM 2.5 and CO concentrations (predicted R 2 = 0.837 and 0.822, respectively). This study provides baseline indoor air quality data for Paraguay and presents a multivariate statistical approach that could be used in future research and intervention programs.


Environment International | 2018

Modeling the potential health benefits of lower household air pollution after a hypothetical liquified petroleum gas (LPG) cookstove intervention

Kyle Steenland; Ajay Pillarisetti; Miles Kirby; Jennifer L. Peel; Maggie L. Clark; Will Checkley; Howard H. Chang; Thomas Clasen

INTRODUCTION Improved biomass and advanced fuel cookstoves can lower household air pollution (HAP), but levels of fine particulate matter (PM2.5) often remain above the World Health Organization (WHO) recommended interim target of 35μg/m3. METHODS Based on existing literature, we first estimate a range of likely levels of personal PM2.5 before and after a liquefied petroleum gas (LPG) intervention. Using simulations reflecting uncertainty in both the exposure estimates and exposure-response coefficients, we estimate corresponding expected health benefits for systolic blood pressure (SBP) in adults, birthweight, and pneumonia incidence among children <2years old. We also estimate potential avoided premature mortality among those exposed. RESULTS Our best estimate is that an LPG stove intervention would decrease personal PM2.5 exposure from approximately 270μg/m3 to approximately 70μg/m3, due to likely continued use of traditional open-fire stoves. We estimate that this decrease would lead to a 5.5mmHg lower SBP among women over age 50, a 338g higher birthweight, and a 37% lower incidence of severe childhood pneumonia. We estimate that decreased SBP, if sustained, would result in a 5%-10% decrease in mortality for women over age 50. We estimate that higher birthweight would reduce infant mortality by 4 to 11 deaths per 1000 births; for comparison, the current global infant mortality rate is 32/1000 live births. Reduced exposure is estimated to prevent approximately 29 cases of severe pneumonia per year per 1000 children under 2, avoiding approximately 2-3 deaths/1000 per year. However, there are large uncertainties around all these estimates due to uncertainty in both exposure estimates and in exposure-response coefficients; all health effect estimates include the null value of no benefit. CONCLUSIONS An LPG stove intervention, while not likely to lower exposure to the WHO interim target level, is still likely to offer important health benefits.


Ecohealth | 2018

A Low-Cost Stove Use Monitor to Enable Conditional Cash Transfers

Ajay Pillarisetti; Manpreet Gill; Tracy Allen; Sathish Madhavan; Arun Dhongade; Makarand Ghorpade; Sudipto Roy; Kalpana Balakrishnan; Sanjay Juvekar; Kirk R. Smith

Conditional cash transfers (CCTs)—cash payments provided to households or specific household members who meet defined conditions or fulfill certain behaviors—have been extensively used in India to encourage antenatal care, institutional delivery, and vaccination. This paper describes the social design and technical development of a low-cost, meal-counting stove use monitor (the Pink Key) that enables a CCT based on liquefied petroleum gas (LPG) usage and presents pilot data from its testing and the initial deployment. The system consists of a sensing harness attached to a two-burner LPG stove and an easily removable datalogger. For each cooking event with LPG, households receive 2 rupees—less than the cost of fuel, but enough to partially defray LPG refill costs. The system could enable innovative “self-monitoring” at a large scale—participants initiate the CCT by bringing their Pink Key to antenatal clinic visits, where care providers download data and initiate payments, and participants return the sensor to their stove at home. The system aligns with existing Indian programs to improve health among poor, pregnant women, and contributes a new method to encourage the use of clean cooking technologies.

Collaboration


Dive into the Ajay Pillarisetti's collaboration.

Top Co-Authors

Avatar

Kirk R. Smith

University of California

View shared research outputs
Top Co-Authors

Avatar

David Pennise

University of California

View shared research outputs
Top Co-Authors

Avatar

Jiawen Liao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rufus Edwards

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge