Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ajia Town is active.

Publication


Featured researches published by Ajia Town.


Journal of Clinical Oncology | 2005

PDGFRA Mutations in Gastrointestinal Stromal Tumors: Frequency, Spectrum and In Vitro Sensitivity to Imatinib

Christopher L. Corless; Arin Schroeder; Diana J. Griffith; Ajia Town; Laura McGreevey; Patina Harrell; Sharon Shiraga; Troy Bainbridge; Jason R. Morich; Michael C. Heinrich

PURPOSE Gastrointestinal stromal tumors (GISTs) commonly harbor oncogenic mutations of the KIT tyrosine kinase, which is a target for the kinase inhibitor imatinib. A subset of GISTs, however, contains mutations in the homologous kinase platelet derived growth factor receptor alpha (PDGFRA), and the most common of these mutations is resistant to imatinib in vitro. Little is known of the other types of PDGFRA mutations that occur in GISTs. MATERIALS AND METHODS We determined the KIT and PDGFRA mutation status of 1,105 unique GISTs using a combination of denaturing high-performance liquid chromatography and direct sequencing. RESULTS 66 in exon 18, 11 in exon 12, and three in exon 14. Transient expression of representative PDGFRA isoforms in CHO cells revealed imatinib sensitivity of exon 12 mutations (SPDHE566-571R and insertion ER561-562) and an exon 14 substitution (N659K). However, most isoforms with a substitution involving codon D842 in exon 18 (D842V, RD841-842KI, DI842-843IM) were resistant to the drug, with the exception of D842Y. Interestingly, other mutations in exon 18 (D846Y, N848K, Y849K and HDSN845-848P) were all imatinib sensitive. Proliferation studies with BA/F3 cell lines stably expressing selected PDGFRA mutant isoforms supported these findings. CONCLUSION Including our cases, there are 289 reported PDGFRA-mutant GISTs, of which 181 (62.6%) had the imatinib-resistant substitution D842V. However, our findings suggest that more than one third of GISTs with PDGFRA mutations may respond to imatinib and that mutation screening may be helpful in the management of these tumors.


Journal of Clinical Oncology | 2008

Primary and Secondary Kinase Genotypes Correlate With the Biological and Clinical Activity of Sunitinib in Imatinib-Resistant Gastrointestinal Stromal Tumor

Michael C. Heinrich; Robert G. Maki; Christopher L. Corless; Cristina R. Antonescu; Amy Harlow; Diana J. Griffith; Ajia Town; Arin McKinley; Wen Bin Ou; Jonathan A. Fletcher; Christopher D. M. Fletcher; Xin Huang; Darrel P. Cohen; Charles M. Baum; George D. Demetri

PURPOSE Most gastrointestinal stromal tumors (GISTs) harbor mutant KIT or platelet-derived growth factor receptor alpha (PDGFRA) kinases, which are imatinib targets. Sunitinib, which targets KIT, PDGFRs, and several other kinases, has demonstrated efficacy in patients with GIST after they experience imatinib failure. We evaluated the impact of primary and secondary kinase genotype on sunitinib activity. PATIENTS AND METHODS Tumor responses were assessed radiologically in a phase I/II trial of sunitinib in 97 patients with metastatic, imatinib-resistant/intolerant GIST. KIT/PDGFRA mutational status was determined for 78 patients by using tumor specimens obtained before and after prior imatinib therapy. Kinase mutants were biochemically profiled for sunitinib and imatinib sensitivity. RESULTS Clinical benefit (partial response or stable disease for > or = 6 months) with sunitinib was observed for the three most common primary GIST genotypes: KIT exon 9 (58%), KIT exon 11 (34%), and wild-type KIT/PDGFRA (56%). Progression-free survival (PFS) was significantly longer for patients with primary KIT exon 9 mutations (P = .0005) or with a wild-type genotype (P = .0356) than for those with KIT exon 11 mutations. The same pattern was observed for overall survival (OS). PFS and OS were longer for patients with secondary KIT exon 13 or 14 mutations (which involve the KIT-adenosine triphosphate binding pocket) than for those with exon 17 or 18 mutations (which involve the KIT activation loop). Biochemical profiling studies confirmed the clinical results. CONCLUSION The clinical activity of sunitinib after imatinib failure is significantly influenced by both primary and secondary mutations in the predominant pathogenic kinases, which has implications for optimization of the treatment of patients with GIST.


Clinical Cancer Research | 2008

KIT Gene Mutations and Copy Number in Melanoma Subtypes

Carol Beadling; Erick Jacobson-Dunlop; F. Stephen Hodi; Claudia Le; Andrea Warrick; Janice Patterson; Ajia Town; Amy Harlow; Frank Cruz; Sharl Azar; Brian P. Rubin; Susan Muller; Robert B. West; Michael C. Heinrich; Christopher L. Corless

Purpose: We recently identified a KIT exon 11 mutation in an anorectal melanoma of a patient who had an excellent response to treatment with imatinib. To determine the frequency of KIT mutations across melanoma subtypes, we surveyed a large series of tumors. Experimental Design: One hundred eighty-nine melanomas were screened for mutations in KIT exons 11, 13, and 17. KIT copy number was assessed by quantitative PCR. A subset of cases was evaluated for BRAF and NRAS mutations. Immunohistochemistry was done to assess KIT (CD117) expression. Results:KIT mutations were detected in 23% (3 of 13) of acral melanomas, 15.6% (7 of 45) of mucosal melanomas, 7.7% (1 of 13) of conjunctival melanomas, 1.7% (1 of 58) of cutaneous melanomas, and 0% (0 of 60) of choroidal melanomas. Almost all the KIT mutations were of the type predicted to be imatinib sensitive. There was no overlap with NRAS mutations (11.1% of acral and 24.3% of mucosal tumors) or with BRAF mutations (absent in mucosal tumors). Increased KIT copy number was detected in 27.3% (3 of 11) of acral and 26.3% (10 of 38) of mucosal melanomas, but was less common among cutaneous (6.7%; 3 of 45), conjunctival (7.1%; 1 of 14), and choroidal melanomas (0 of 28). CD117 expression, present in 39% of 105 tumors representing all melanoma types, did not correlate with either KIT mutation status or KIT copy number. Conclusions: Our findings confirm that KIT mutations are most common in acral and mucosal melanomas but do not necessarily correlate with KIT copy number or CD117 expression. Screening for KIT mutations may open up new treatment options for melanoma patients.


American Journal of Pathology | 2002

KIT Mutations Are Common in Incidental Gastrointestinal Stromal Tumors One Centimeter or Less in Size

Christopher L. Corless; Laura McGreevey; Andrea Haley; Ajia Town; Michael C. Heinrich

Gastrointestinal stromal tumors (GISTs) are mesenchymal neoplasms of the gut wall that express the receptor tyrosine kinase KIT. Somatic mutations that result in constitutive activation of KIT kinase have been identified in a number of studies of GISTs, although the reported frequency of these mutations has varied over a wide range (20 to 92%). Several reports have suggested that KIT gene mutations are more common in malignant GISTs than in benign lesions, and it has been proposed that mutations in exon 11 of KIT are a negative prognostic factor. To maximize sensitivity for KIT mutations we have adapted denaturing high-pressure liquid chromatography as a method for screening polymerase chain reaction amplimers of exons 9, 11, 13, and 17 from GIST genomic DNA. This approach was used to assess the frequency of KIT mutations in 13 morphologically benign, incidentally discovered, GISTs identified at autopsy, endoscopy, or laparotomy for unrelated disease. Representing the smallest pathologically recognizable GISTs, these lesions ranged in size from 4 to 10 mm in diameter and were all immunohistochemically positive for KIT. Eleven of the 13 tumors had sequence-confirmed mutations in KIT, including 10 mutations in exon 11 (77%) and one mutation in exon 9 (7.7%). The remaining two tumors were wild type for exons 9, 11, and 17; one of these was also analyzed for exon 13 and was wild type in this exon as well. The mutations found in the incidental GISTs were identical to those that have been documented in larger GISTs. In addition, the overall frequency of mutations in the incidental tumors (85%) did not differ significantly from that we previously reported in a series of 72 advanced/metastatic GISTs (86%), strongly supporting the view that activating mutations in KIT are acquired very early in the development of most GISTs. The findings suggest that KIT mutations per se are of little prognostic importance in GISTs.


American Journal of Pathology | 2004

KIT Mutations Are Common in Testicular Seminomas

Kathleen A. Kemmer; Christopher L. Corless; Jonathan A. Fletcher; Laura McGreevey; Andrea Haley; Diana J. Griffith; Oscar W. Cummings; Cecily L. Wait; Ajia Town; Michael C. Heinrich

Expression of KIT tyrosine kinase is critical for normal germ cell development and is observed in the majority of seminomas. Activating mutations in KIT are common in gastrointestinal stromal tumors and mastocytosis. In this study we examined the frequency and spectrum of KIT mutations in 54 testicular seminomas, 1 ovarian dysgerminoma and 37 non-seminomatous germ cell tumors (NSGCT). Fourteen seminomas (25.9%) contained exon 17 point mutations including D816V (6 cases), D816H (3 cases), Y823D (2 cases), and single examples of Y823C, N822K, and T801I. No KIT mutations were found in the ovarian dysgerminoma or the NSGCTs. In transient transfection assays, mutant isoforms D816V, D816H, Y823D, and N822K were constitutively phosphorylated in the absence of the natural ligand for KIT, stem cell factor (SCF). In contrast, activation of T801I and wild-type KIT required SCF. Mutants N822K and Y823D were inhibited by imatinib mesylate (Gleevec, previously STI571) whereas D816V and D816H were both resistant to imatinib mesylate. Biochemical evidence of KIT activation, as assessed by KIT phosphorylation and KIT association with phosphatidylinositol (PI) 3-kinase in tumor cell lysates, was largely confined to seminomas with a genomic KIT mutation. These findings suggest that activating KIT mutations may contribute to tumorigenesis in a subset of seminomas, but are not involved in NSGCT.


Clinical Cancer Research | 2008

Phase II, Open-Label Study Evaluating the Activity of Imatinib in Treating Life-Threatening Malignancies Known to Be Associated with Imatinib-Sensitive Tyrosine Kinases

Michael C. Heinrich; Heikki Joensuu; George D. Demetri; Christopher L. Corless; Jane F. Apperley; Jonathan A. Fletcher; Denis Soulières; Stephan Dirnhofer; Amy Harlow; Ajia Town; Arin McKinley; S. G. Supple; John F. Seymour; L. Di Scala; A.T. van Oosterom; R. Herrmann; Zariana Nikolova; A. G. McArthur

Purpose: To evaluate the activity of imatinib in treating advanced, life-threatening malignancies expressing one or more imatinib-sensitive tyrosine kinases. Experimental Design: This was a phase II, open-label, single arm study. Patients ≥15 years old with malignancies showing histologic or molecular evidence of expression/activation of imatinib-sensitive tyrosine kinases were enrolled. Patients were treated with 400 or 800 mg/d imatinib for hematologic malignancy and solid tumors, respectively. Treatment was continued until disease progression or unacceptable toxicity. The primary objective was to identify evidence of imatinib activity with tumor response as the primary end point. Results: One hundred eighty-six patients with 40 different malignancies were enrolled (78.5% solid tumors, 21.5% hematologic malignancies). Confirmed response occurred in 8.9% of solid tumor patients (4 complete, 9 partial) and 27.5% of hematologic malignancy patients (8 complete, 3 partial). Notable activity of imatinib was observed in only five tumor types (aggressive fibromatosis, dermatofibrosarcoma protuberans, hypereosinophilic syndrome, myeloproliferative disorders, and systemic mastocytosis). A total of 106 tumors were screened for activating mutations: five KIT mutations and no platelet-derived growth factor receptor mutations were found. One patient with systemic mastocytosis and a partial response to therapy had a novel imatinib-sensitive KIT mutation (D816T). There was no clear relationship between expression or activation of wild-type imatinib-sensitive tyrosine kinases and clinical response. Conclusion: Clinical benefit was largely confined to diseases with known genomic mechanisms of activation of imatinib target kinases. Our results indicate an important role for molecular characterization of tumors to identify patients likely to benefit from imatinib treatment.


The Journal of Molecular Diagnostics | 2004

KIT Gene Deletions at the Intron 10−Exon 11 Boundary in GI Stromal Tumors

Christopher L. Corless; Laura McGreevey; Ajia Town; Arin Schroeder; Troy Bainbridge; Patina Harrell; Jonathan A. Fletcher; Michael C. Heinrich

Most gastrointestinal stromal tumors (GISTs) harbor oncogenic mutations in the KIT gene, and the majority of these mutations affect the juxtamembrane domain of the kinase encoded by exon 11. Screening GISTs for KIT gene mutations is important for translational research studies and for providing prognostic information on the likelihood of tumor response to treatment with the kinase inhibitor imatinib mesylate (Gleevec). In a series of GISTs analyzed in our laboratory by a combination of denaturing HPLC and direct DNA sequencing, we identified 19 cases with KIT exon 11 deletions that included from 1 to 14 bp of intron 10 sequence and resulted in loss of the normal splice acceptor site at the beginning of exon 11. Predicted use of the next potential splice-acceptor site was confirmed by cDNA sequencing in 4 cases. Thus, the resulting mutant isoform, deletion KPMYEVQWK 550-558, was the same in all 19 cases. Only two other examples of deletions across the intron 10-exon 11 boundary have been reported, yet among 722 GISTs analyzed in our laboratories these deletions were not uncommon, accounting for 3.9% of exon 11 mutations and 2.6% of all tumors. Loss of KIT intron 10 sequences may be under-recognized if the forward primer is too close to exon 11, or if cases are examined exclusively at the cDNA level. Laboratories that offer clinical screening for KIT mutations in GI stromal tumors should be aware of this class of mutations.


Leukemia | 2006

FLT3 K663Q is a novel AML-associated oncogenic kinase: determination of biochemical properties and sensitivity to Sunitinib (SU11248)

M. M. Schittenhelm; Kevin W. H. Yee; J. W. Tyner; Laura McGreevey; Andrea Haley; Ajia Town; Diana J. Griffith; Troy Bainbridge; Rita M. Braziel; Anne Marie O'Farrell; Julie M. Cherrington; Michael C. Heinrich

Somatic mutations of FLT3 resulting in constitutive kinase activation are the most common acquired genomic abnormality found in acute myeloid leukemia (AML). The majority of these mutations are internal tandem duplications (ITD) of the juxtamembrane region (JM). In addition, a minority of cases of AML are associated with mutation of the FLT3 activation loop (AL), typically involving codons D835 and/or I836. We hypothesized that other novel mutations of FLT3 could also contribute to leukemogenesis. We genotyped 109 cases of AML and identified two novel gain-of-function mutations. The first mutation, N841 H, is similar to previously described mutations involving amino-acid substitutions of codon 841. The other novel mutation, FLT3 K663Q, is the first AML-associated gain-of-function mutation located outside the JM and AL domains. Of note, this mutation was potently inhibited by Sunitinib (SU11248), a previously described FLT3 kinase inhibitor. Sunitinib reduced the proliferation and induced apoptosis of transformed Ba/F3 cells expressing FLT3 K663Q. The potency of Sunitinib against FLT3 K663Q was similar to its potency against FLT3 ITD mutations. We conclude that FLT3 mutations in AML can involve novel regions of the TK1. Future studies are needed to define the incidence and prognostic significance of FLT3 mutations outside the well-established JM and AL regions.


Molecular Cancer Therapeutics | 2014

Combination Therapy for KIT-Mutant Mast Cells: Targeting Constitutive NFAT and KIT Activity

Alison C. Macleod; Lillian R. Klug; Janice Patterson; Diana J. Griffith; Carol Beadling; Ajia Town; Michael C. Heinrich

Resistant KIT mutations have hindered the development of KIT kinase inhibitors for treatment of patients with systemic mastocytosis. The goal of this research was to characterize the synergistic effects of a novel combination therapy involving inhibition of KIT and calcineurin phosphatase, a nuclear factor of activated T cells (NFAT) regulator, using a panel of KIT-mutant mast cell lines. The effects of monotherapy or combination therapy on the cellular viability/survival of KIT-mutant mast cells were evaluated. In addition, NFAT-dependent transcriptional activity was monitored in a representative cell line to evaluate the mechanisms responsible for the efficacy of combination therapy. Finally, shRNA was used to stably knockdown calcineurin expression to confirm the role of calcineurin in the observed synergy. The combination of a KIT inhibitor and a calcineurin phosphatase inhibitor (CNPI) synergized to reduce cell viability and induce apoptosis in six distinct KIT-mutant mast cell lines. Both KIT inhibitors and CNPIs were found to decrease NFAT-dependent transcriptional activity. NFAT-specific inhibitors induced similar synergistic apoptosis induction as CNPIs when combined with a KIT inhibitor. Notably, NFAT was constitutively active in each KIT-mutant cell line tested. Knockdown of calcineurin subunit PPP3R1 sensitized cells to KIT inhibition and increased NFAT phosphorylation and cytoplasmic localization. Constitutive activation of NFAT appears to represent a novel and targetable characteristic of KIT-mutant mast cell disease. Our studies suggest that combining KIT inhibition with NFAT inhibition might represent a new treatment strategy for mast cell disease. Mol Cancer Ther; 13(12); 2840–51. ©2014 AACR.


Oncogene | 2018

LMTK3 is essential for oncogenic KIT expression in KIT-mutant GIST and melanoma

Lillian R. Klug; Amber E. Bannon; Nathalie Javidi-Sharifi; Ajia Town; William H. Fleming; Judy K. VanSlyke; Linda S. Musil; Jonathan A. Fletcher; Jeffrey W. Tyner; Michael C. Heinrich

Certain cancers, including gastrointestinal stromal tumor (GIST) and subsets of melanoma, are caused by somatic KIT mutations that result in KIT receptor tyrosine kinase constitutive activity, which drives proliferation. The treatment of KIT-mutant GIST has been revolutionized with the advent of KIT-directed cancer therapies. KIT tyrosine kinase inhibitors (TKI) are superior to conventional chemotherapy in their ability to control advanced KIT-mutant disease. However, these therapies have a limited duration of activity due to drug-resistant secondary KIT mutations that arise (or that are selected for) during KIT TKI treatment. To overcome the problem of KIT TKI resistance, we sought to identify novel therapeutic targets in KIT-mutant GIST and melanoma cells using a human tyrosine kinome siRNA screen. From this screen, we identified lemur tyrosine kinase 3 (LMTK3) and herein describe its role as a novel KIT regulator in KIT-mutant GIST and melanoma cells. We find that LMTK3 regulated the translation rate of KIT, such that loss of LMTK3 reduced total KIT, and thus KIT downstream signaling in cancer cells. Silencing of LMTK3 decreased cell viability and increased cell death in KIT-dependent, but not KIT-independent GIST and melanoma cell lines. Notably, LMTK3 silencing reduced viability of all KIT-mutant cell lines tested, even those with drug-resistant KIT secondary mutations. Furthermore, targeting of LMTK3 with siRNA delayed KIT-dependent GIST growth in a xenograft model. Our data suggest the potential of LMTK3 as a target for treatment of patients with KIT-mutant cancer, particularly after failure of KIT TKIs.

Collaboration


Dive into the Ajia Town's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan A. Fletcher

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge