Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janice Patterson is active.

Publication


Featured researches published by Janice Patterson.


Clinical Cancer Research | 2008

KIT Gene Mutations and Copy Number in Melanoma Subtypes

Carol Beadling; Erick Jacobson-Dunlop; F. Stephen Hodi; Claudia Le; Andrea Warrick; Janice Patterson; Ajia Town; Amy Harlow; Frank Cruz; Sharl Azar; Brian P. Rubin; Susan Muller; Robert B. West; Michael C. Heinrich; Christopher L. Corless

Purpose: We recently identified a KIT exon 11 mutation in an anorectal melanoma of a patient who had an excellent response to treatment with imatinib. To determine the frequency of KIT mutations across melanoma subtypes, we surveyed a large series of tumors. Experimental Design: One hundred eighty-nine melanomas were screened for mutations in KIT exons 11, 13, and 17. KIT copy number was assessed by quantitative PCR. A subset of cases was evaluated for BRAF and NRAS mutations. Immunohistochemistry was done to assess KIT (CD117) expression. Results:KIT mutations were detected in 23% (3 of 13) of acral melanomas, 15.6% (7 of 45) of mucosal melanomas, 7.7% (1 of 13) of conjunctival melanomas, 1.7% (1 of 58) of cutaneous melanomas, and 0% (0 of 60) of choroidal melanomas. Almost all the KIT mutations were of the type predicted to be imatinib sensitive. There was no overlap with NRAS mutations (11.1% of acral and 24.3% of mucosal tumors) or with BRAF mutations (absent in mucosal tumors). Increased KIT copy number was detected in 27.3% (3 of 11) of acral and 26.3% (10 of 38) of mucosal melanomas, but was less common among cutaneous (6.7%; 3 of 45), conjunctival (7.1%; 1 of 14), and choroidal melanomas (0 of 28). CD117 expression, present in 39% of 105 tumors representing all melanoma types, did not correlate with either KIT mutation status or KIT copy number. Conclusions: Our findings confirm that KIT mutations are most common in acral and mucosal melanomas but do not necessarily correlate with KIT copy number or CD117 expression. Screening for KIT mutations may open up new treatment options for melanoma patients.


Clinical Cancer Research | 2012

Crenolanib Inhibits the Drug-Resistant PDGFRA D842V Mutation Associated with Imatinib-Resistant Gastrointestinal Stromal Tumors

Michael C. Heinrich; Diana J. Griffith; Arin McKinley; Janice Patterson; Ajia Presnell; Maria Debiec-Rychter

Purpose: To determine the potential of crenolanib, a potent inhibitor of PDGFRA, to treat malignancies driven by mutant PDGFRA. Experimental Design: The biochemical activity of crenolanib was compared with imatinib using a panel of PDGFRA-mutant kinases expressed in several different cell line models, including primary gastrointestinal stromal tumors (GIST) cells. The antiproliferative activity of crenolanib was also studied in several cell lines with PDGFRA-dependent growth. Results: Crenolanib was significantly more potent than imatinib in inhibiting the kinase activity of imatinib-resistant PDGFRA kinases (D842I, D842V, D842Y, DI842-843IM, and deletion I843). For example, crenolanib was 135-fold more potent than imatinib against D842V in our isogenic model system, with an IC50 of approximately 10 nmol/L. The relative potency of crenolanib was further confirmed in BaF3 and primary GIST cells expressing PDGFRA D842V. In contrast, imatinib was at least 10-fold more potent than crenolanib in inhibiting the V561D mutation. For all other tested PDGFRA mutations, crenolanib and imatinib had comparable potency. Conclusions: Crenolanib is a potent inhibitor of imatinib-resistant PDGFRA kinases associated with GIST, including the PDGFRA D842V mutation found in approximately 5% of GISTs. The spectrum of activity of crenolanib suggests that this drug is a type I inhibitor (inhibitor of activated conformation of kinase). Based in part on these results, a phase II clinical study of this agent to treat GIST with the PDGFRA D842V mutation has been initiated. Clin Cancer Res; 18(16); 4375–84. ©2012 AACR.


Breast Cancer Research and Treatment | 2010

Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma

Jennifer Dunlap; Claudia Le; Arielle Shukla; Janice Patterson; Ajia Presnell; Michael C. Heinrich; Christopher L. Corless; Megan L. Troxell

Mutationally activated protein kinases are appealing therapeutic targets in breast carcinoma. Mutations in phosphatidylinositol-3-kinase (PI3KCA) have been described in 8–40% of invasive breast carcinomas, and AKT1 mutations have been characterized in 1–8% of breast carcinomas. However, there is little data on these mutations in breast precursor lesions. To further delineate the molecular evolution of breast tumorigenesis, samples of invasive breast carcinoma with an accompanying in situ component were macro dissected from formalin-fixed paraffin embedded tissue and screened for mutations in PIK3CA exons 7, 9, 20, and AKT1 exon 2. Laser capture micro dissection (LCM) was performed on mutation-positive carcinomas to directly compare the genotypes of separated invasive and in situ tumor cells. Among 81 cases of invasive carcinoma, there were eight mutations in PIK3CA exon 20 (7 H1047R, 1 H1047L) and four mutations in exon 9 (2 E545K, 1 E542K, 1 E545G), totaling 12/81 (14.8%). In 11 cases examined, paired LCM in situ tumor showed the identical PIK3CA mutation in invasive and in situ carcinoma. Likewise, 3 of 78 (3.8%) invasive carcinomas showed an AKT1 E17K mutation, and this mutation was identified in matching in situ carcinoma in both informative cases. Mutational status did not correlate with clinical parameters including hormone receptor status, grade, and lymph node status. The complete concordance of PIK3CA and AKT1 mutations in matched samples of invasive and in situ tumor indicates that these mutations occur early in breast cancer development and has implications with regard to therapeutics targeted to the PI3 kinase pathway.


Modern Pathology | 2010

High prevalence of PIK3CA/AKT pathway mutations in papillary neoplasms of the breast.

Megan L. Troxell; Judith Levine; Carol Beadling; Andrea Warrick; Jennifer Dunlap; Ajia Presnell; Janice Patterson; Arielle Shukla; Michael C. Heinrich; Christopher L. Corless

Papillary lesions of the breast have an uncertain relationship to the histogenesis of breast carcinoma, and are thus diagnostically and managerially challenging. Molecular genetic studies have provided evidence that ductal carcinoma in situ and even atypical ductal hyperplasia are precursors of invasive carcinoma. However, papillary lesions have been seldom studied. We screened papillary breast neoplasms for activating point mutations in PIK3CA, AKT1, and RAS protein-family members, which are common in invasive ductal carcinomas. DNA extracts were prepared from sections of 89 papillary lesions, including 61 benign papillomas (28 without significant hyperplasia; 33 with moderate to florid hyperplasia), 11 papillomas with atypical ductal hyperplasia, 7 papillomas with carcinoma in situ, and 10 papillary carcinomas. Extracts were screened for PIK3CA and AKT1 mutations using mass spectrometry; cases that were negative were further screened for mutations in AKT2, BRAF, CDK, EGFR, ERBB2, KRAS, NRAS, and HRAS. Mutations were confirmed by sequencing or HPLC assay. A total of 55 of 89 papillary neoplasms harbored mutations (62%), predominantly in AKT1 (E17K, 27 cases) and PIK3CA (exon 20 >exon 9, 27 cases). Papillomas had more mutations in AKT1 (54%) than in PIK3CA (21%), whereas papillomas with hyperplasia had more PIK3CA (42%) than AKT1 (15%) mutations, as did papillomas with atypical ductal hyperplasia (PIK3CA 45%, AKT1 27%, and NRAS 9%). Among seven papillomas with carcinoma in situ, three had AKT1 mutations. The 10 papillary carcinomas showed an overall lower frequency of mutations, including 1 with an AKT1 mutation (in a tumor arising from a papilloma), 1 with an NRAS gene mutation (Q61H), and 2 with PIK3CA mutations (1 overlapping with the NRAS Q61H). These findings indicate that approximately two-thirds of papillomas are driven by mutations in the PI3CA/AKT pathway. Some papillary carcinomas may arise from these lesions, but others may have different molecular origins.


The Journal of Molecular Diagnostics | 2011

Multiplex Mutation Screening by Mass Spectrometry: Evaluation of 820 Cases from a Personalized Cancer Medicine Registry

Carol Beadling; Michael C. Heinrich; Andrea Warrick; Erin M. Forbes; Dylan Nelson; Emily Justusson; Judith Levine; Tanaya Neff; Janice Patterson; Ajia Presnell; Arin McKinley; Laura J. Winter; Christie Dewey; Amy Harlow; Oscar Barney; Brian J. Druker; Kathryn G. Schuff; Christopher L. Corless

There is an immediate and critical need for a rapid, broad-based genotyping method that can evaluate multiple mutations simultaneously in clinical cancer specimens and identify patients most likely to benefit from targeted agents now in use or in late-stage clinical development. We have implemented a prospective genotyping approach to characterize the frequency and spectrum of mutations amenable to drug targeting present in urothelial, colorectal, endometrioid, and thyroid carcinomas and in melanoma. Cancer patients were enrolled in a Personalized Cancer Medicine Registry that houses both clinical information and genotyping data, and mutation screening was performed using a multiplexed assay panel with mass spectrometry-based analysis to detect 390 mutations across 30 cancer genes. Formalin fixed, paraffin-embedded specimens were evaluated from 820 Registry patients. The genes most frequently mutated across multiple cancer types were BRAF, PIK3CA, KRAS, and NRAS. Less common mutations were also observed in AKT1, CTNNB1, FGFR2, FGFR3, GNAQ, HRAS, and MAP2K1. Notably, 48 of 77 PIK3CA-mutant cases (62%) harbored at least one additional mutation in another gene, most often KRAS. Among melanomas, only 54 of 73 BRAF mutations (74%) were the V600E substitution. These findings demonstrate the diversity and complexity of mutations in druggable targets among the different cancer types and underscore the need for a broad-spectrum, prospective genotyping approach to personalized cancer medicine.


Molecular Cancer Therapeutics | 2012

Sorafenib Inhibits Many Kinase Mutations Associated with Drug-Resistant Gastrointestinal Stromal Tumors

Michael C. Heinrich; Adrián Mariño-Enríquez; Ajia Presnell; Rachel S. Donsky; Diana J. Griffith; Arin McKinley; Janice Patterson; Takahiro Taguchi; Cher-Wei Liang; Jonathan A. Fletcher

Sorafenib has substantial clinical activity as third- or fourth-line treatment of imatinib- and sunitinib-resistant gastrointestinal stromal tumors (GIST). Because sorafenib targets both angiogenesis-related kinases (VEGFR) and the pathogenetic kinases found in GIST (KIT or PDGFRA), the molecular basis for sorafenib efficacy in this setting remains unknown. We sought to determine the spectrum of activity of sorafenib against different mutant kinases associated with drug-sensitive and drug-resistant GIST. We compared the activity of imatinib and sorafenib against transiently expressed mutant forms of KIT and PDGFRA, including various secondary mutations that have been identified in imatinib-resistant or sunitinib-resistant GISTs. We also examined these drugs against four GIST cell lines, three of which are imatinib resistant. In our in vitro studies, we determined that sorafenib inhibited imatinib-resistant mutations in exons encoding the ATP/drug-binding pocket and in exons encoding the activation loop, with the exception of substitutions at KIT codon D816 and PDGFRA codon 842. Notably our data indicate that sorafenib is more effective than imatinib or sunitinib for inhibiting the kinase activity of drug-resistant KIT mutants (as assessed by biochemical IC50). We hypothesize that a major determinant of the efficacy of sorafenib for treatment of advanced GIST is the activity of this agent against KIT or PDGFRA-mutant kinases. These results have implications for the further development of treatments for drug-resistant GIST. Mol Cancer Ther; 11(8); 1770–80. ©2012 AACR.


Cancer Medicine | 2013

Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA

Carol Beadling; Janice Patterson; Emily Justusson; Dylan Nelson; Maria Abbondanza Pantaleo; Jason L. Hornick; Matias Chacón; Christopher L. Corless; Michael C. Heinrich

Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal (ICCs) and are the most common mesenchymal neoplasm of the gastrointestinal tract. While the majority of GISTs harbor activating mutations in either the v‐kit Hardy‐Zuckerman feline sarcoma viral oncogene homolog (KIT) or platelet‐derived growth factor receptor alpha (PDGFRA) tyrosine kinases, approximately 10–15% of adult GISTs and 85% of pediatric GISTs lack such mutations. These “wild‐type” GISTs have been reported to express high levels of the insulin‐like growth factor 1 receptor (IGF1R), and IGF1R‐targeted therapy of wild‐type GISTs is being evaluated in clinical trials. However, it is not clear that all wild‐type GISTs express IGF1R, because studies to date have predominantly focused on a particular subtype of gastric wild‐type GIST that is deficient in the mitochondrial succinate dehydrogenase (SDH) complex. This study of a series of 136 GISTs, including 72 wild‐type specimens, was therefore undertaken to further characterize wild‐type GIST subtypes based on the relative expression of transcripts encoding IGF1R. Additional transcripts relevant to GIST biology were also evaluated, including members of the IGF‐signaling pathway (IGF1, IGF2, and insulin receptor [INSR]), neural markers (CDH2[CDH: Cadherin], neurofilament, light polypeptide, LHX2 [LHX: LIM homeobox], and KIRREL3 [KIRREL: kin of IRRE like]), KIT, PDGFRA, CD34, and HIF1A. Succinate dehydrogenase complex, subunit B protein expression was also assessed as a measure of SDH complex integrity. In addition to the previously described SDH‐deficient, IGF1Rhigh wild‐type GISTs, other SDH‐intact wild‐type subpopulations were defined by high relative expression of IGF1R, neural markers, IGF1 and INSR, or low IGF1R coupled with high IGF2. These results underscore the complexity and heterogeneity of wild‐type GISTs that will need to be factored into molecularly‐targeted therapeutic strategies.


Molecular Cancer Therapeutics | 2014

Combination Therapy for KIT-Mutant Mast Cells: Targeting Constitutive NFAT and KIT Activity

Alison C. Macleod; Lillian R. Klug; Janice Patterson; Diana J. Griffith; Carol Beadling; Ajia Town; Michael C. Heinrich

Resistant KIT mutations have hindered the development of KIT kinase inhibitors for treatment of patients with systemic mastocytosis. The goal of this research was to characterize the synergistic effects of a novel combination therapy involving inhibition of KIT and calcineurin phosphatase, a nuclear factor of activated T cells (NFAT) regulator, using a panel of KIT-mutant mast cell lines. The effects of monotherapy or combination therapy on the cellular viability/survival of KIT-mutant mast cells were evaluated. In addition, NFAT-dependent transcriptional activity was monitored in a representative cell line to evaluate the mechanisms responsible for the efficacy of combination therapy. Finally, shRNA was used to stably knockdown calcineurin expression to confirm the role of calcineurin in the observed synergy. The combination of a KIT inhibitor and a calcineurin phosphatase inhibitor (CNPI) synergized to reduce cell viability and induce apoptosis in six distinct KIT-mutant mast cell lines. Both KIT inhibitors and CNPIs were found to decrease NFAT-dependent transcriptional activity. NFAT-specific inhibitors induced similar synergistic apoptosis induction as CNPIs when combined with a KIT inhibitor. Notably, NFAT was constitutively active in each KIT-mutant cell line tested. Knockdown of calcineurin subunit PPP3R1 sensitized cells to KIT inhibition and increased NFAT phosphorylation and cytoplasmic localization. Constitutive activation of NFAT appears to represent a novel and targetable characteristic of KIT-mutant mast cell disease. Our studies suggest that combining KIT inhibition with NFAT inhibition might represent a new treatment strategy for mast cell disease. Mol Cancer Ther; 13(12); 2840–51. ©2014 AACR.


International Journal of Molecular Sciences | 2018

Integrated Molecular Characterization of Gastrointestinal Stromal Tumors (GIST) Harboring the Rare D842V Mutation in PDGFRA Gene

Valentina Indio; Annalisa Astolfi; Giuseppe Tarantino; Milena Urbini; Janice Patterson; Margherita Nannini; Maristella Saponara; Lidia Gatto; Donatella Santini; Italo Faria do Valle; Gastone Castellani; Daniel Remondini; Michelangelo Fiorentino; Margaret Von Mehren; Giovanni Brandi; Guido Biasco; Michael C. Heinrich; M. A. Pantaleo

Gastrointestinal stromal tumors (GIST) carrying the D842V activating mutation in the platelet-derived growth factor receptor alpha (PDGFRA) gene are a very rare subgroup of GIST (about 10%) known to be resistant to conventional tyrosine kinase inhibitors (TKIs) and to show an indolent behavior. In this study, we performed an integrated molecular characterization of D842V mutant GIST by whole-transcriptome and whole-exome sequencing coupled with protein–ligand interaction modelling to identify the molecular signature and any additional recurrent genomic event related to their clinical course. We found a very specific gene expression profile of D842V mutant tumors showing the activation of G-protein-coupled receptor (GPCR) signaling and a relative downregulation of cell cycle processes. Beyond D842V, no recurrently mutated genes were found in our cohort. Nevertheless, many private, clinically relevant alterations were found in each tumor (TP53, IDH1, FBXW7, SDH-complex). Molecular modeling of PDGFRA D842V suggests that the mutant protein binds imatinib with lower affinity with respect to wild-type structure, showing higher stability during the interaction with other type I TKIs (like crenolanib). D842V mutant GIST do not show any actionable recurrent molecular events of therapeutic significance, therefore this study supports the rationale of novel TKIs development that are currently being evaluated in clinical studies for the treatment of D842V mutant GIST.


Oncotarget | 2013

BRAF Mutant Gastrointestinal Stromal Tumor: First report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance

Gerald S. Falchook; Jonathan C. Trent; Michael C. Heinrich; Carol Beadling; Janice Patterson; Christel C. Bastida; Samuel C. Blackman; Razelle Kurzrock

Collaboration


Dive into the Janice Patterson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge