Ajit Panigrahi
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ajit Panigrahi.
Science and Technology of Advanced Materials | 2013
Matthias Bönisch; Mariana Calin; T. Waitz; Ajit Panigrahi; M. Zehetbauer; Annett Gebert; Werner Skrotzki; J. Eckert
Abstract Aiming at understanding the governing microstructural phenomena during heat treatments of Ni-free Ti-based shape memory materials for biomedical applications, a series of Ti–Nb alloys with Nb concentrations up to 29 wt% was produced by cold-crucible casting, followed by homogenization treatment and water quenching. Despite the large amount of literature available concerning the thermal stability and ageing behavior of Ti–Nb alloys, only few studies were performed dealing with the isochronal transformation behavior of initially martensitic Ti–Nb alloys. In this work, the formation of martensites (α′ and α″) and their stability under different thermal processing conditions were investigated by a combination of x-ray diffraction, differential scanning calorimetry, dilatometry and electron microscopy. The effect of Nb additions on the structural competition in correlation with stable and metastable phase diagrams was also studied. Alloys with 24 wt% Nb or less undergo a transformation sequence on heating from room temperature to 1155 K. In alloys containing >24 wt% Nb α″ martensitically reverts back to β0, which is highly unstable against chemical demixing by formation of isothermal ωiso. During slow cooling from the single phase β domain α precipitates and only very limited amounts of α″ martensite form.
Journal of The Mechanical Behavior of Biomedical Materials | 2016
Ajit Panigrahi; Bartosz Sulkowski; T. Waitz; Kadir Ozaltin; Witold Chrominski; Aurimas Pukenas; Jelena Horky; Małgorzata Lewandowska; Werner Skrotzki; M. Zehetbauer
Biocompatible β Ti-45Nb (wt%) alloys were subjected to different methods of severe plastic deformation (SPD) in order to increase the mechanical strength without increasing the low Young׳s modulus thus avoiding the stress shielding effect. The mechanical properties, microstructural changes and texture evolution were investigated, by means of tensile, microhardness and nanoindentation tests, as well as TEM and XRD. Significant increases of hardness and ultimate tensile strength up to a factor 1.6 and 2, respectively, could be achieved depending on the SPD method applied (hydrostatic extrusion - HE, high pressure torsion - HPT, and rolling and folding - R&F), while maintaining the considerable ductility. Due to the high content of β-stabilizing Nb, the initial lattice structure turned out to be stable upon all of the SPD methods applied. This explains why with all SPD methods the apparent Young׳s modulus measured by nanoindentation did not exceed that of the non-processed material. For its variations below that level, they could be quantitatively related to changes in the SPD-induced texture, by means of calculations of the Young׳s modulus on basis of the texture data which were carefully measured for all different SPD techniques and strains. This is especially true for the significant decrease of Young׳s modulus for increasing R&F processing which is thus identified as a texture effect. Considering the mechanical biocompatibility (percentage of hardness over Young׳s modulus), a value of 3-4% is achieved with all the SPD routes applied which recommends them for enhancing β Ti-alloys for biomedical applications.
Journal of Materials Science | 2014
B. Sulkowski; Ajit Panigrahi; K. Ozaltin; Małgorzata Lewandowska; B. Mikulowski; M. Zehetbauer
A β-phase Ti–45Nb alloy was processed by several severe plastic deformation (SPD) methods as high-pressure torsion, cold rolling and folding, and hydrostatic extrusion to enhance its strength by achieving an ultrafine grained structure without affecting the Young’s modulus being close to that of bone material. Mechanical properties during processing were monitored by direct torque and Vickers hardness measurements, while the micro-/nano-structural evolution was investigated by transmission electron microscopy and X-ray line profile analysis. Simulations of both mechanical and micro-/nano-structural data were performed on the basis of the SPD work-hardening model by Zehetbauer. The simulations not only found a good agreement with the deformation-specific evolution of strength and density of individual dislocations but also well reflected mesoscopic structural quantities such as the sizes of cell/grain interiors and walls without introducing additional fitting parameters.
Nature Communications | 2017
Matthias Bönisch; Ajit Panigrahi; Mihai Stoica; Mariana Calin; Eike Ahrens; M. Zehetbauer; Werner Skrotzki; J. Eckert
Ti-alloys represent the principal structural materials in both aerospace development and metallic biomaterials. Key to optimizing their mechanical and functional behaviour is in-depth know-how of their phases and the complex interplay of diffusive vs. displacive phase transformations to permit the tailoring of intricate microstructures across a wide spectrum of configurations. Here, we report on structural changes and phase transformations of Ti–Nb alloys during heating by in situ synchrotron diffraction. These materials exhibit anisotropic thermal expansion yielding some of the largest linear expansion coefficients (+ 163.9×10−6 to −95.1×10−6 °C−1) ever reported. Moreover, we describe two pathways leading to the precipitation of the α-phase mediated by diffusion-based orthorhombic structures, α″lean and α″iso. Via coupling the lattice parameters to composition both phases evolve into α through rejection of Nb. These findings have the potential to promote new microstructural design approaches for Ti–Nb alloys and β-stabilized Ti-alloys in general.Complex phase transformations in β-stabilised titanium alloys can dramatically change their α and β microstructures, providing tailorability for aerospace or biomaterial applications. Here the authors show that Ti-Nb alloys exhibit giant thermal expansions and identify two new pathways that lead to α phase formation.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2017
Kadir Ozaltin; Ajit Panigrahi; Witold Chrominski; A. G. Bulutsuz; Mariusz Kulczyk; M. Zehetbauer; Małgorzata Lewandowska
A biomedical β-type Ti-13Nb-13Zr (TNZ) (wt pct) ternary alloy was subjected to severe plastic deformation by means of hydrostatic extrusion (HE) at room temperature without intermediate annealing. Its effect on microstructure, mechanical properties, phase transformations, and texture was investigated by light and electron microscopy, mechanical tests (Vickers microhardness and tensile tests), and XRD analysis. Microstructural investigations by light microscope and transmission electron microscope showed that, after HE, significant grain refinement took place, also reaching high dislocation densities. Increases in strength up to 50 pct occurred, although the elongation to fracture left after HE was almost 9 pct. Furthermore, Young’s modulus of HE-processed samples showed slightly lower values than the initial state due to texture. Such mechanical properties combined with lower Young’s modulus are favorable for medical applications. Phase transformation analyses demonstrated that both initial and extruded samples consist of α′ and β phases but that the phase fraction of α′ was slightly higher after two stages of HE.
IOP Conference Series: Materials Science and Engineering | 2014
Ajit Panigrahi; N Scheerbaum; Paul Chekhonin; Juliane Scharnweber; B. Beausir; Matthias Hockauf; S Sankaran; Werner Skrotzki
Large billets (5 x 5 x 30) cm3 of technically pure aluminum (AA 1050) taken from thick rolled sheets were deformed at room temperature by single pass equal-channel angular pressing (ECAP). ECAP was done at different back pressures (0 – 60 MPa) using a square die with channels intersecting at 90° in sharp corners. The normal direction of rolling was taken parallel to the transverse direction of ECAP. The flow pattern was visualized by marker lines on split billets. The initial texture of the coarse-grained rolled sheet was measured by neutron diffraction. After ECAP, X-ray diffraction was used to measure the texture gradient from top to bottom of the billets. The results show, that with increasing back pressure the corner gap is closed and the flow line pattern becomes more symmetric. The flow line exponent increases strongly from top to bottom of the billets. Moreover, the inhomogeneous deformed zone at the bottom of the billets becomes smaller. The texture changes from a typical rolling texture to a typical shear texture with the intensity of the different shear texture components changing with back pressure. For the ACcomponent splitting is observed. The texture changes are discussed considering Toths flow line model and grain refinement.
Journal of Alloys and Compounds | 2015
Ajit Panigrahi; Matthias Bönisch; T. Waitz; E. Schafler; Mariana Calin; J. Eckert; Werner Skrotzki; M. Zehetbauer
International Journal of Hydrogen Energy | 2015
Andreas Grill; Jelena Horky; Ajit Panigrahi; G. Krexner; M. Zehetbauer
Journal of Materials Science | 2014
Kadir Ozaltin; Witold Chrominski; Mariusz Kulczyk; Ajit Panigrahi; Jelena Horky; M. Zehetbauer; Małgorzata Lewandowska
Journal of Alloys and Compounds | 2017
Matthias Bönisch; Ajit Panigrahi; Mariana Calin; T. Waitz; M. Zehetbauer; Werner Skrotzki; J. Eckert