Ajit S. Divakaruni
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ajit S. Divakaruni.
Essays in Biochemistry | 2010
Martin Jastroch; Ajit S. Divakaruni; Shona A. Mookerjee; Jason R. Treberg; Martin D. Brand
Mitochondrial proton and electron leak have a major impact on mitochondrial coupling efficiency and production of reactive oxygen species. In the first part of this chapter, we address the molecular nature of the basal and inducible proton leak pathways, and their physiological importance. The basal leak is unregulated, and a major proportion can be attributed to mitochondrial anion carriers, whereas the proton leak through the lipid bilayer appears to be minor. The basal proton leak is cell-type specific and correlates with metabolic rate. The inducible leak through the ANT (adenine nucleotide translocase) and UCPs (uncoupling proteins) can be activated by fatty acids, superoxide or lipid peroxidation products. The physiological role of inducible leak through UCP1 in mammalian brown adipose tissue is heat production, whereas the roles of non-mammalian UCP1 and its paralogous proteins, in particular UCP2 and UCP3, are not yet resolved. The second part of the chapter focuses on the electron leak that occurs in the mitochondrial electron transport chain. Exit of electrons prior to the reduction of oxygen to water at cytochrome c oxidase causes superoxide production. As the mechanisms of electron leak are crucial to understanding their physiological relevance, we summarize the mechanisms and topology of electron leak from complexes I and III in studies using isolated mitochondria. We also highlight recent progress and challenges of assessing electron leak in the living cell. Finally, we emphasize the importance of proton and electron leak as therapeutic targets in body mass regulation and insulin secretion.
Physiology | 2011
Ajit S. Divakaruni; Martin D. Brand
Mitochondria couple respiration to ATP synthesis through an electrochemical proton gradient. Proton leak across the inner membrane allows adjustment of the coupling efficiency. The aim of this review is threefold: 1) introduce the unfamiliar reader to proton leak and its physiological significance, 2) review the role and regulation of uncoupling proteins, and 3) outline the prospects of proton leak as an avenue to treat obesity, diabetes, and age-related disease.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Ajit S. Divakaruni; Sandra E. Wiley; George W. Rogers; Alexander Y. Andreyev; Susanna Petrosyan; Mattias Loviscach; Estelle A. Wall; Nagendra Yadava; Alejandro P. Heuck; David A. Ferrick; Robert R. Henry; William G. McDonald; Jerry R. Colca; Melvin I. Simon; Theodore P. Ciaraldi; Anne N. Murphy
Facilitated pyruvate transport across the mitochondrial inner membrane is a critical step in carbohydrate, amino acid, and lipid metabolism. We report that clinically relevant concentrations of thiazolidinediones (TZDs), a widely used class of insulin sensitizers, acutely and specifically inhibit mitochondrial pyruvate carrier (MPC) activity in a variety of cell types. Respiratory inhibition was overcome with methyl pyruvate, localizing the effect to facilitated pyruvate transport, and knockdown of either paralog, MPC1 or MPC2, decreased the EC50 for respiratory inhibition by TZDs. Acute MPC inhibition significantly enhanced glucose uptake in human skeletal muscle myocytes after 2 h. These data (i) report that clinically used TZDs inhibit the MPC, (ii) validate that MPC1 and MPC2 are obligatory components of facilitated pyruvate transport in mammalian cells, (iii) indicate that the acute effect of TZDs may be related to insulin sensitization, and (iv) establish mitochondrial pyruvate uptake as a potential therapeutic target for diseases rooted in metabolic dysfunction.
Biochimica et Biophysica Acta | 2010
Vian Azzu; Martin Jastroch; Ajit S. Divakaruni; Martin D. Brand
Uncoupling proteins (UCP1, UCP2 and UCP3) are important in regulating cellular fuel metabolism and as attenuators of reactive oxygen species production through strong or mild uncoupling. The generic function and broad tissue distribution of the uncoupling protein family means that they are increasingly implicated in a range of pathophysiological processes including obesity, insulin resistance and diabetes mellitus, neurodegeneration, cardiovascular disease, immunity and cancer. The significant recent progress describing the turnover of novel uncoupling proteins, as well as current views on the physiological roles and regulation of UCPs, is outlined.
Molecular Cell | 2014
Nathaniel M. Vacanti; Ajit S. Divakaruni; Courtney R. Green; Seth J. Parker; Robert R. Henry; Theodore P. Ciaraldi; Anne N. Murphy; Christian M. Metallo
Pyruvate lies at a central biochemical node connecting carbohydrate, amino acid, and fatty acid metabolism, and the regulation of pyruvate flux into mitochondria represents a critical step in intermediary metabolism impacting numerous diseases. To characterize changes in mitochondrial substrate utilization in the context of compromised mitochondrial pyruvate transport, we applied (13)C metabolic flux analysis (MFA) to cells after transcriptional or pharmacological inhibition of the mitochondrial pyruvate carrier (MPC). Despite profound suppression of both glucose and pyruvate oxidation, cell growth, oxygen consumption, and tricarboxylic acid (TCA) metabolism were surprisingly maintained. Oxidative TCA flux was achieved through enhanced reliance on glutaminolysis through malic enzyme and pyruvate dehydrogenase (PDH) as well as fatty acid and branched-chain amino acid oxidation. Thus, in contrast to inhibition of complex I or PDH, suppression of pyruvate transport induces a form of metabolic flexibility associated with the use of lipids and amino acids as catabolic and anabolic fuels.
Cancer Research | 2014
Alexandra R. Grassian; Seth J. Parker; Shawn M. Davidson; Ajit S. Divakaruni; Courtney R. Green; Xiamei Zhang; Kelly Slocum; Minying Pu; Fallon Lin; Chad Vickers; Carol Joud-Caldwell; Franklin Chung; Hong Yin; Erika Handly; Christopher Sean Straub; Joseph D. Growney; Matthew G. Vander Heiden; Anne N. Murphy; Raymond Pagliarini; Christian M. Metallo
Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation.
PLOS ONE | 2013
Jerry R. Colca; William G. McDonald; Gregory S. Cavey; Serena L. Cole; Danielle D. Holewa; Angela S. Brightwell-Conrad; Cindy L. Wolfe; Jean S. Wheeler; Kristin R. Coulter; Peter M. Kilkuskie; Elena O. Gracheva; Yulia Korshunova; Michelle Trusgnich; Robert Karr; Sandra E. Wiley; Ajit S. Divakaruni; Anne N. Murphy; Patrick A. Vigueira; Brian N. Finck; Rolf F. Kletzien
Thiazolidinedione (TZD) insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44) and BRP44 Like (BRP44L), which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT) cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of 13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT) and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.
Nature Chemical Biology | 2016
Courtney R. Green; Martina Wallace; Ajit S. Divakaruni; Susan A. Phillips; Anne N. Murphy; Theodore P. Ciaraldi; Christian M. Metallo
Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, though less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre–adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid metabolism and lipogenesis. In contrast to proliferating cells that use glucose and glutamine for acetyl–coenzyme A (AcCoA) generation, differentiated adipocytes increased branched chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from media and/or protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd–chain fatty acid synthesis. B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism plays a functional role in adipocyte differentiation.
Mechanisms of Ageing and Development | 2010
Shona A. Mookerjee; Ajit S. Divakaruni; Martin Jastroch; Martin D. Brand
The quest to understand why we age has given rise to numerous lines of investigation that have gradually converged to include metabolic control by mitochondrial activity as a major player. That is, the ideal balance between nutrient uptake, its transduction into usable energy, and the mitigation of damaging byproducts can be regulated by mitochondrial respiration and output (ATP, reactive oxygen species (ROS), and heat). Mitochondrial inefficiency through proton leak, which uncouples substrate oxidation from ADP phosphorylation, can comprise as much as 30% of the basal metabolic rate. This uncoupling is hypothesized to protect cells from conditions that favor ROS production. Uncoupling can also occur through pharmacological induction of proton leak and activity of the uncoupling proteins. Mitochondrial uncoupling is implicated in lifespan extension through its effects on metabolic rate and ROS production. However, evidence to date does not suggest a consistent role for uncoupling in lifespan. The purpose of this review is to discuss recent work examining how mitochondrial uncoupling impacts lifespan.
Methods in Enzymology | 2014
Ajit S. Divakaruni; Alexander Paradyse; David A. Ferrick; Anne N. Murphy; Martin Jastroch
Breakthrough technologies to measure cellular oxygen consumption and proton efflux are reigniting the study of cellular energetics by increasing the scope and pace with which discoveries are made. As we learn the variation in metabolism between cell types is large, it is helpful to continually provide additional perspectives and update our roadmap for data interpretation. In that spirit, this chapter provides the following for those conducting microplate-based oxygen consumption experiments: (i) a description of the standard parameters for measuring respiration in intact cells, (ii) a framework for data analysis and normalization, and (iii) examples of measuring respiration in permeabilized cells to follow up results observed with intact cells. Additionally, rate-based measurements of extracellular pH are increasingly used as a qualitative indicator of glycolytic flux. As a resource to help interpret these measurements, this chapter also provides a detailed accounting of proton production during glucose oxidation in the context of plate-based assays.