Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne N. Murphy is active.

Publication


Featured researches published by Anne N. Murphy.


Nature Biotechnology | 2003

Characterization of the human heart mitochondrial proteome

Steven W. Taylor; Eoin Fahy; Bing Zhang; Gary M. Glenn; Dale E. Warnock; Sandra E. Wiley; Anne N. Murphy; Sara P. Gaucher; Roderick A. Capaldi; Bradford W. Gibson; Soumitra S. Ghosh

To gain a better understanding of the critical role of mitochondria in cell function, we have compiled an extensive catalogue of the mitochondrial proteome using highly purified mitochondria from normal human heart tissue. Sucrose gradient centrifugation was employed to partially resolve protein complexes whose individual protein components were separated by one-dimensional PAGE. Total in-gel processing and subsequent detection by mass spectrometry and rigorous bioinformatic analysis yielded a total of 615 distinct protein identifications. All protein pI values, molecular weight ranges, and hydrophobicities were represented. The coverage of the known subunits of the oxidative phosphorylation machinery within the inner mitochondrial membrane was >90%. A significant proportion of identified proteins are involved in signaling, RNA, DNA, and protein synthesis, ion transport, and lipid metabolism. The biochemical roles of 19% of the identified proteins have not been defined. This database of proteins provides a comprehensive resource for the discovery of novel mitochondrial functions and pathways.


Biochemical Journal | 2002

Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.

Yulia Kushnareva; Anne N. Murphy; Alexander Y. Andreyev

Several lines of evidence indicate that mitochondrial reactive oxygen species (ROS) generation is the major source of oxidative stress in the cell. It has been shown that ROS production accompanies cytochrome c release in different apoptotic paradigms, but the site(s) of ROS production remain obscure. In the current study, we demonstrate that loss of cytochrome c by mitochondria oxidizing NAD(+)-linked substrates results in a dramatic increase of ROS production and respiratory inhibition. This increased ROS production can be mimicked by rotenone, a complex I inhibitor, as well as other chemical inhibitors of electron flow that act further downstream in the electron transport chain. The effects of cytochrome c depletion from mitoplasts on ROS production and respiration are reversible upon addition of exogenous cytochrome c. Thus in these models of mitochondrial injury, a primary site of ROS generation in both brain and heart mitochondria is proximal to the rotenone inhibitory site, rather than in complex III. ROS production at complex I is critically dependent upon a highly reduced state of the mitochondrial NAD(P)(+) pool and is achieved upon nearly complete inhibition of the respiratory chain. Redox clamp experiments using the acetoacetate/L-beta-hydroxybutyrate couple in the presence of a maximally inhibitory rotenone concentration suggest that the site is approx. 50 mV more electronegative than the NADH/NAD(+) couple. In the absence of inhibitors, this highly reduced state of mitochondria can be induced by reverse electron flow from succinate to NAD(+), accounting for profound ROS production in the presence of succinate. These results lead us to propose a model of thermodynamic control of mitochondrial ROS production which suggests that the ROS-generating site of complex I is the Fe-S centre N-1a.


Journal of Cerebral Blood Flow and Metabolism | 1999

Mitochondria in Neurodegeneration: Bioenergetic Function in Cell Life and Death:

Anne N. Murphy; Gary Fiskum; M. Flint Beal

The biochemical pathways to cell death in chronic and acute forms of neurodegeneration are poorly understood, limiting the ability to develop effective therapeutic approaches. As details of the apoptotic and necrotic pathways have been revealed, an appreciation for the decisive role that mitochondria play in life-death decisions for the cell has grown. As a result, the need has arisen to reevaluate the significance to cell viability of mitochondrial Ca2+ sequestration, reactive oxygen species generation, and the membrane permeability transition. This review provides basic information on these mitochondrial functions as they relate to control over cell death.


PLOS ONE | 2011

High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria

George W. Rogers; Martin D. Brand; Susanna Petrosyan; Deepthi Ashok; Alvaro A. Elorza; David A. Ferrick; Anne N. Murphy

Recently developed technologies have enabled multi-well measurement of O2 consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1–10 µg of mitochondrial protein per well). Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples.


Cell Death & Differentiation | 2008

Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II

Satoshi Miyamoto; Anne N. Murphy; Joan Heller Brown

Akt activation supports survival of cardiomyocytes against ischemia/reperfusion, which induces cell death through opening of the mitochondrial permeability transition pore (PT-pore). Mitochondrial depolarization induced by treatment of cardiomyocytes with H202 is prevented by activation of Akt with leukemia inhibitory factor (LIF). This protective effect is observed even when cardiomyocytes treated with LIF are permeabilized and mitochondrial depolarization is elicited by elevating Ca2+. Cell fractionation studies demonstrate that LIF treatment increases both total and phosphorylated Akt in the mitochondrial fraction. Furthermore, the association of Akt with HK-II is increased by LIF. HK-II contains consensus sequences for phosphorylation by Akt and LIF treatment induces PI3K- and Akt-dependent HK-II phosphorylation. Addition of recombinant kinase-active Akt to isolated adult mouse heart mitochondria stimulates phosphorylation of HK-II and concomitantly inhibits the ability of Ca2+ to induce cytochrome c release. This protection is prevented when HK-II is dissociated from mitochondria by incubation with glucose 6-phosphate or HK-II-dissociating peptide. Finally LIF increases HK-II association with mitochondria and dissociation of HK-II from mitochondria attenuates the protective effect of LIF on H202-induced mitochondrial depolarization in cardiomyocytes. We conclude that Akt has a direct effect at the level of the mitochondrion, which is mediated via phosphorylation of HK-II and results in protection of mitochondria against oxidant or Ca2+-stimulated PT-pore opening.


Journal of Clinical Investigation | 2013

AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function

Laura L. Dugan; Young Hyun You; Sameh S. Ali; Maggie K. Diamond-Stanic; Satoshi Miyamoto; Anne-Emilie Declèves; Aleksander Y. Andreyev; Tammy Quach; San Ly; Grigory Shekhtman; William Nguyen; Andre Chepetan; Thuy Le; Lin Wang; Ming Xu; Kacie P. Paik; Agnes B. Fogo; Benoit Viollet; Anne N. Murphy; Frank C. Brosius; Robert K. Naviaux; Kumar Sharma

Diabetic microvascular complications have been considered to be mediated by a glucose-driven increase in mitochondrial superoxide anion production. Here, we report that superoxide production was reduced in the kidneys of a steptozotocin-induced mouse model of type 1 diabetes, as assessed by in vivo real-time transcutaneous fluorescence, confocal microscopy, and electron paramagnetic resonance analysis. Reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK, the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans. Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were rescued by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney. Furthermore, diabetic heterozygous superoxide dismutase 2 (Sod2(+/-)) mice had no evidence of increased renal disease, and Ampka2(-/-) mice had increased albuminuria that was not reduced with AICAR treatment. Reduction of mitochondrial superoxide production with rotenone was sufficient to reduce AMPK phosphorylation in mouse kidneys. Taken together, these results demonstrate that diabetic kidneys have reduced superoxide and mitochondrial biogenesis and activation of AMPK enhances superoxide production and mitochondrial function while reducing disease activity.


Proceedings of the National Academy of Sciences of the United States of America | 2007

MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity

Sandra E. Wiley; Anne N. Murphy; Stuart A. Ross; Peter van der Geer; Jack E. Dixon

Members of the thiazolidinedione (TZD) class of insulin-sensitizing drugs are extensively used in the treatment of type 2 diabetes. Pioglitazone, a member of the TZD family, has been shown to bind specifically to a protein named mitoNEET [Colca JR, McDonald WG, Waldon DJ, Leone JW, Lull JM, Bannow CA, Lund ET, Mathews WR (2004) Am J Physiol 286:E252–E260]. Bioinformatic analysis reveals that mitoNEET is a member of a small family of proteins containing a domain annotated as a CDGSH-type zinc finger. Although annotated as a zinc finger protein, mitoNEET contains no zinc, but instead contains 1.6 mol of Fe per mole of protein. The conserved sequence C-X-C-X2-(S/T)-X3-P-X-C-D-G-(S/A/T)-H is a defining feature of this unique family of proteins and is likely involved in iron binding. Localization studies demonstrate that mitoNEET is an integral protein present in the outer mitochondrial membrane. An amino-terminal anchor sequence tethers the protein to the outer membrane with the CDGSH domain oriented toward the cytoplasm. Cardiac mitochondria isolated from mitoNEET-null mice demonstrate a reduced oxidative capacity, suggesting that mito- NEET is an important iron-containing protein involved in the control of maximal mitochondrial respiratory rates.


Journal of Biological Chemistry | 2013

Parkin Protein Deficiency Exacerbates Cardiac Injury and Reduces Survival following Myocardial Infarction

Dieter A. Kubli; Xiaoxue Zhang; Youngil Lee; Rita A. Hanna; Melissa N. Quinsay; Christine K. Nguyen; Rebecca Jimenez; Susanna Petrosyan; Anne N. Murphy; Åsa B. Gustafsson

Background: The functional importance of Parkin in the heart is unknown. Results: Parkin deficiency results in increased susceptibility to myocardial infarction. Conclusion: Parkin is important in adapting to stress. Significance: Our studies will advance our knowledge of Parkin in cardiovascular disease. It is known that loss-of-function mutations in the gene encoding Parkin lead to development of Parkinson disease. Recently, Parkin was found to play an important role in the removal of dysfunctional mitochondria via autophagy in neurons. Although Parkin is expressed in the heart, its functional role in this tissue is largely unexplored. In this study, we have investigated the role of Parkin in the myocardium under normal physiological conditions and in response to myocardial infarction. We found that Parkin-deficient (Parkin−/−) mice had normal cardiac function for up to 12 months of age as determined by echocardiographic analysis. Although ultrastructural analysis revealed that Parkin-deficient hearts had disorganized mitochondrial networks and significantly smaller mitochondria, mitochondrial function was unaffected. However, Parkin−/− mice were much more sensitive to myocardial infarction when compared with wild type mice. Parkin−/− mice had reduced survival and developed larger infarcts when compared with wild type mice after the infarction. Interestingly, Parkin protein levels and mitochondrial autophagy (mitophagy) were rapidly increased in the border zone of the infarct in wild type mice. In contrast, Parkin−/− myocytes had reduced mitophagy and accumulated swollen, dysfunctional mitochondria after the infarction. Overexpression of Parkin in isolated cardiac myocytes also protected against hypoxia-mediated cell death, whereas nonfunctional Parkinson disease-associated mutants ParkinR42P and ParkinG430D had no effect. Our results suggest that Parkin plays a critical role in adapting to stress in the myocardium by promoting removal of damaged mitochondria.


Proceedings of the National Academy of Sciences of the United States of America | 2007

MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone.

Mark L. Paddock; Sandra E. Wiley; Herbert L. Axelrod; Aina E. Cohen; Melinda Roy; Edward C. Abresch; Dominique T. Capraro; Anne N. Murphy; Rachel Nechushtai; Jack E. Dixon; Patricia A. Jennings

Iron–sulfur (Fe–S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 Å x-ray crystal structure of the first identified outer mitochondrial membrane Fe–S protein, mitoNEET. Two protomers intertwine to form a unique dimeric structure that constitutes a new fold to not only the ≈650 reported Fe–S protein structures but also to all known proteins. We name this motif the NEET fold. The protomers form a two-domain structure: a β-cap domain and a cluster-binding domain that coordinates two acid-labile 2Fe–2S clusters. Binding of pioglitazone, an insulin-sensitizing thiazolidinedione used in the treatment of type 2 diabetes, stabilizes the protein against 2Fe–2S cluster release. The biophysical properties of mitoNEET suggest that it may participate in a redox-sensitive signaling and/or in Fe–S cluster transfer.


Journal of Biological Chemistry | 2011

ChChd3, an Inner Mitochondrial Membrane Protein, Is Essential for Maintaining Crista Integrity and Mitochondrial Function

Manjula Darshi; Vincent L. Mendiola; Mason R. Mackey; Anne N. Murphy; Antonius Koller; Guy A. Perkins; Mark H. Ellisman; Susan S. Taylor

The mitochondrial inner membrane (IM) serves as the site for ATP production by hosting the oxidative phosphorylation complex machinery most notably on the crista membranes. Disruption of the crista structure has been implicated in a variety of cardiovascular and neurodegenerative diseases. Here, we characterize ChChd3, a previously identified PKA substrate of unknown function (Schauble, S., King, C. C., Darshi, M., Koller, A., Shah, K., and Taylor, S. S. (2007) J. Biol. Chem. 282, 14952–14959), and show that it is essential for maintaining crista integrity and mitochondrial function. In the mitochondria, ChChd3 is a peripheral protein of the IM facing the intermembrane space. RNAi knockdown of ChChd3 in HeLa cells resulted in fragmented mitochondria, reduced OPA1 protein levels and impaired fusion, and clustering of the mitochondria around the nucleus along with reduced growth rate. Both the oxygen consumption and glycolytic rates were severely restricted. Ultrastructural analysis of these cells revealed aberrant mitochondrial IM structures with fragmented and tubular cristae or loss of cristae, and reduced crista membrane. Additionally, the crista junction opening diameter was reduced to 50% suggesting remodeling of cristae in the absence of ChChd3. Analysis of the ChChd3-binding proteins revealed that ChChd3 interacts with the IM proteins mitofilin and OPA1, which regulate crista morphology, and the outer membrane protein Sam50, which regulates import and assembly of β-barrel proteins on the outer membrane. Knockdown of ChChd3 led to almost complete loss of both mitofilin and Sam50 proteins and alterations in several mitochondrial proteins, suggesting that ChChd3 is a scaffolding protein that stabilizes protein complexes involved in maintaining crista architecture and protein import and is thus essential for maintaining mitochondrial structure and function.

Collaboration


Dive into the Anne N. Murphy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Fiskum

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Guy A. Perkins

University of California

View shared research outputs
Top Co-Authors

Avatar

Jack E. Dixon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge