Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akatsuki Kimura is active.

Publication


Featured researches published by Akatsuki Kimura.


The EMBO Journal | 2011

Regulation of interkinetic nuclear migration by cell cycle‐coupled active and passive mechanisms in the developing brain

Yoichi Kosodo; Taeko Suetsugu; Masumi Suda; Yuko Mimori-Kiyosue; Kazunori Toida; Shoji A. Baba; Akatsuki Kimura; Fumio Matsuzaki

A hallmark of neurogenesis in the vertebrate brain is the apical–basal nuclear oscillation in polarized neural progenitor cells. Known as interkinetic nuclear migration (INM), these movements are synchronized with the cell cycle such that nuclei move basally during G1‐phase and apically during G2‐phase. However, it is unknown how the direction of movement and the cell cycle are tightly coupled. Here, we show that INM proceeds through the cell cycle‐dependent linkage of cell‐autonomous and non‐autonomous mechanisms. During S to G2 progression, the microtubule‐associated protein Tpx2 redistributes from the nucleus to the apical process, and promotes nuclear migration during G2‐phase by altering microtubule organization. Thus, Tpx2 links cell‐cycle progression and autonomous apical nuclear migration. In contrast, in vivo observations of implanted microbeads, acute S‐phase arrest of surrounding cells and computational modelling suggest that the basal migration of G1‐phase nuclei depends on a displacement effect by G2‐phase nuclei migrating apically. Our model for INM explains how the dynamics of neural progenitors harmonize their extensive proliferation with the epithelial architecture in the developing brain.


BMC Biology | 2012

What determines cell size

Wallace F. Marshall; Kevin D. Young; Matthew Swaffer; Elizabeth Wood; Paul Nurse; Akatsuki Kimura; Joseph Frankel; John Charles Wallingford; Virginia Walbot; Xian Qu; Adrienne H. K. Roeder

AbstractFirst paragraph (this article has no abstract) For well over 100 years, cell biologists have been wondering what determines the size of cells. In modern times, we know all of the molecules that control the cell cycle and cell division, but we still do not understand how cell size is determined. To check whether modern cell biology has made any inroads on this age-old question, BMC Biology asked several heavyweights in the field to tell us how they think cell size is controlled, drawing on a range of different cell types. The essays in this collection address two related questions - why does cell size matter, and how do cells control it.


Current Biology | 2009

Cell-Size-Dependent Spindle Elongation in the Caenorhabditis elegans Early Embryo

Yuki Hara; Akatsuki Kimura

Cell size is one of the critical parameters controlling the size of intracellular structures. A well-known example is the constant nuclear-to-cytoplasmic ratio (N/C ratio) [1-5]. The length of the metaphase spindle is proportional to cell size, but it has an upper limit during early embryogenesis [6]. During anaphase, the mitotic spindle elongates and delivers the centrosomes and sister chromatids near the centers of the nascent daughter cells. Here, we quantified the relationship between spindle elongation and cell size in the early embryo of Caenorhabditis elegans and propose possible models for cell-size-dependent spindle elongation. Quantitative measurements revealed that the extent and speed of spindle elongation are correlated with cell size throughout early embryogenesis. RNAi knockdown of Galpha proteins and their regulators revealed that the spindles failed to fully elongate and that the speed of spindle elongation was almost constant regardless of cell size. Our results suggest that spindle elongation is controlled by two qualitatively distinct mechanisms, i.e., Galpha-dependent and -independent modes of elongation. Simulation analyses revealed that the constant-pulling model and the force-generator-limited model reproduced the dynamics of the Galpha-independent and Galpha-dependent mechanisms, respectively. These models also explain how the set length of spindles is achieved.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo

Kenji Kimura; Akatsuki Kimura

The centrosome is generally maintained at the center of the cell. In animal cells, centrosome centration is powered by the pulling force of microtubules, which is dependent on cytoplasmic dynein. However, it is unclear how dynein brings the centrosome to the cell center, i.e., which structure inside the cell functions as a substrate to anchor dynein. Here, we provide evidence that a population of dynein, which is located on intracellular organelles and is responsible for organelle transport toward the centrosome, generates the force required for centrosome centration in Caenorhabditis elegans embryos. By using the database of full-genome RNAi in C. elegans, we identified dyrb-1, a dynein light chain subunit, as a potential subunit involved in dynein anchoring for centrosome centration. DYRB-1 is required for organelle movement toward the minus end of the microtubules. The temporal correlation between centrosome centration and the net movement of organelle transport was found to be significant. Centrosome centration was impaired when Rab7 and RILP, which mediate the association between organelles and dynein in mammalian cells, were knocked down. These results indicate that minus end-directed transport of intracellular organelles along the microtubules is required for centrosome centration in C. elegans embryos. On the basis of this finding, we propose a model in which the reaction forces of organelle transport generated along microtubules act as a driving force that pulls the centrosomes toward the cell center. This is the first model, to our knowledge, providing a mechanical basis for cytoplasmic pulling force for centrosome centration.


Current Opinion in Cell Biology | 2010

New look inside the spindle: microtubule-dependent microtubule generation within the spindle

Gohta Goshima; Akatsuki Kimura

The structure, dynamics, and mechanics of mitotic and meiotic spindles have been progressively elucidated through the advancements in microscopic technology, identification of the genes involved, and construction of theoretical frameworks. Here, we review recent works that have utilized quantitative image analysis to advance our understanding of the complex spindle structure of animal cells. In particular, we discuss how microtubules (MTs) are nucleated and distributed inside the spindle. Accumulating evidence supports the presence of MT-dependent MT generation within the spindle. This mechanism would produce dense arrays of intraspindle MTs with various lengths, which may contribute to efficient spindle assembly and stabilize the metaphase spindle. RNA interference (RNAi) screens with quantitative image analysis led to the identification of the augmin complex that plays a key role in this MT generation process.


Genes to Cells | 2011

Breakage of the nuclear envelope by an extending mitotic nucleus occurs during anaphase in Schizosaccharomyces japonicus.

Keita Aoki; Hanako Hayashi; Kanji Furuya; Mamiko Sato; Tomoko Takagi; Masako Osumi; Akatsuki Kimura; Hironori Niki

During open mitosis in higher eukaryotic cells, the nuclear envelope completely breaks down and then mitotic chromosomes are exposed in the cytoplasm. By contrast, mitosis in lower eukaryotes, including fungi, proceeds with the nucleus enclosed in an intact nuclear envelope. The mechanism of mitosis has been studied extensively in yeast, a closed mitosis organism. Here, we describe a form of mitosis in which the nuclear envelope is torn by elongation of the nucleus in the fission yeast Schizosaccharomyces japonicus. The mitotic nucleus of Sz. japonicus adopted a fusiform shape in anaphase, and its following extension caused separation. Finally, a tear in the nuclear envelope occurred in late anaphase. At the same time, a polarized‐biased localization of nuclear pores was seen in the fusiform‐shaped nuclear envelope, suggesting a compromise in the mechanical integrity of the lipid membrane. It has been known that nuclear membrane remains intact in some metazoan mitosis. We found that a similar tear of the nuclear envelope was also observed in late mitosis of the Caenorhabditis elegans embryo. These findings provide insight into the diversity of mitosis and the biological significance of breakdown of the nuclear envelope.


Nature Communications | 2012

Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling.

Yusuke Okubo; Takeshi Sugawara; Natsumi Abe-Koduka; Jun Kanno; Akatsuki Kimura; Yumiko Saga

The synchronized oscillation of segmentation clock is required to generate a sharp somite boundary during somitogenesis. However, the molecular mechanism underlying this synchronization in the mouse embryos is not clarified yet. We used both experimental and theoretical approaches to address this key question. Here we show, using chimeric embryos composed of wild-type cells and Delta like 1 (Dll1)-null cells, that Dll1-mediated Notch signalling is responsible for the synchronization mechanism. By analysing Lunatic fringe (Lfng) chimeric embryos and Notch signal reporter assays using a co-culture system, we further find that Lfng represses Notch activity in neighbouring cells by modulating Dll1 function. Finally, numerical simulations confirm that the repressive effect of Lfng against Notch activities in neighbouring cells can sufficiently explain the synchronization in vivo. Collectively, we provide a new model in which Lfng has a crucial role in intercellular coupling of the segmentation clock through a trans-repression mechanism.


Development | 2010

The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral-caudal patterning within a somite

Masayuki Oginuma; Yu Takahashi; Satoshi Kitajima; Makoto Kiso; Jun Kanno; Akatsuki Kimura; Yumiko Saga

Notch signaling exerts multiple roles during different steps of mouse somitogenesis. We have previously shown that segmental boundaries are formed at the interface of the Notch activity boundary, suggesting the importance of the Notch on/off state for boundary formation. However, a recent study has shown that mouse embryos expressing Notch-intracellular domain (NICD) throughout the presomitic mesoderm (PSM) can still form more than ten somites, indicating that the NICD on/off state is dispensable for boundary formation. To clarify this discrepancy in our current study, we created a transgenic mouse lacking NICD boundaries in the anterior PSM but retaining Notch signal oscillation in the posterior PSM by manipulating the expression pattern of a Notch modulator, lunatic fringe. In this mouse, clearly segmented somites are continuously generated, indicating that the NICD on/off state is unnecessary for somite boundary formation. Surprisingly, this mouse also showed a normal rostral-caudal compartment within a somite, conferred by a normal Mesp2 expression pattern with a rostral-caudal gradient. To explore the establishment of normal Mesp2 expression, we performed computer simulations, which revealed that oscillating Notch signaling induces not only the periodic activation of Mesp2 but also a rostral-caudal gradient of Mesp2 in the absence of striped Notch activity in the anterior PSM. In conclusion, we propose a novel function of Notch signaling, in which a progressive oscillating wave of Notch activity is translated into the rostral-caudal polarity of a somite by regulating Mesp2 expression in the anterior PSM. This indicates that the initial somite pattern can be defined as a direct output of the segmentation clock.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Hydrodynamic property of the cytoplasm is sufficient to mediate cytoplasmic streaming in the Caenorhabiditis elegans embryo

Ritsuya Niwayama; Kyosuke Shinohara; Akatsuki Kimura

Cytoplasmic streaming is a type of intracellular transport widely seen in nature. Cytoplasmic streaming in Caenorhabditis elegans at the one-cell stage is bidirectional; the flow near the cortex (“cortical flow”) is oriented toward the anterior, whereas the flow in the central region (“cytoplasmic flow”) is oriented toward the posterior. Both cortical flow and cytoplasmic flow depend on non-muscle-myosin II (NMY-2), which primarily localizes in the cortex. The manner in which NMY-2 proteins drive cytoplasmic flow in the opposite direction from remote locations has not been fully understood. In this study, we demonstrated that the hydrodynamic properties of the cytoplasm are sufficient to mediate the forces generated by the cortical myosin to drive bidirectional streaming throughout the cytoplasm. We quantified the flow velocities of cytoplasmic streaming using particle image velocimetry (PIV) and conducted a three-dimensional hydrodynamic simulation using the moving particle semiimplicit method. Our simulation quantitatively reconstructed the quantified flow velocity distribution resolved through PIV analysis. Furthermore, our PIV analyses detected microtubule-dependent flows during the pronuclear migration stage. These flows were reproduced via hydrodynamic interactions between moving pronuclei and the cytoplasm. The agreement of flow dynamics in vivo and in simulation indicates that the hydrodynamic properties of the cytoplasm are sufficient to mediate cytoplasmic streaming in C. elegans embryos.


BioArchitecture | 2011

A novel mechanism of microtubule length-dependent force to pull centrosomes toward the cell center

Kenji Kimura; Akatsuki Kimura

The centrosome is a major microtubule-organizing center in animal cells, and its intracellular positioning is critical for defining intracellular architecture. The centrosome positions itself at the cell center. Centrosome centration depends on the microtubule cytoskeleton. To accomplish robust centration regardless of the cell size or cell shape, it has been assumed that the force mediated by the microtubules depends on microtubule length. However, a concrete mechanism to generate forces to pull the centrosome in a microtubule length-dependent manner has been elusive. Recently, we successfully demonstrated that centrosome-directed movement of intracellular organelles along microtubules drives centrosome centration in the Caenorhabditis elegans early embryo. Based on this observation, we proposed the centrosome-organelle mutual pulling model in which the reaction forces of organelle transport generated along microtubules act as a driving force that pulls the centrosomes toward the cell center. This is the first experiment-based model that accounts for the microtubule length-dependent pulling force generated in the cytoplasm contributing to centrosome centration. Intriguingly, this model is consistent with a recent estimation that the pulling force is proportional to the cubic length of microtubules.

Collaboration


Dive into the Akatsuki Kimura's collaboration.

Top Co-Authors

Avatar

Ritsuya Niwayama

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Kenji Kimura

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Yuki Hara

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ritsuko Arai

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge