Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Åke Hagström is active.

Publication


Featured researches published by Åke Hagström.


Molecular Ecology | 2006

Global patterns of diversity and community structure in marine bacterioplankton

Thomas Pommier; Björn Canbäck; Lasse Riemann; Kjärstin H Boström; Karin Simu; Per Lundberg; Anders Tunlid; Åke Hagström

Because of their small size, great abundance and easy dispersal, it is often assumed that marine planktonic microorganisms have a ubiquitous distribution that prevents any structured assembly into local communities. To challenge this view, marine bacterioplankton communities from coastal waters at nine locations distributed world‐wide were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes, used as operational taxonomic units (OTU). Our survey and analyses show that there were marked differences in the composition and richness of OTUs between locations. Remarkably, the global marine bacterioplankton community showed a high degree of endemism, and conversely included few cosmopolitan OTUs. Our data were consistent with a latitudinal gradient of OTU richness. We observed a positive relationship between the relative OTU abundances and their range of occupation, i.e. cosmopolitans had the largest population sizes. Although OTU richness differed among locations, the distributions of the major taxonomic groups represented in the communities were analogous, and all local communities were similarly structured and dominated by a few OTUs showing variable taxonomic affiliations. The observed patterns of OTU richness indicate that similar evolutionary and ecological processes structured the communities. We conclude that marine bacterioplankton share many of the biogeographical and macroecological features of macroscopic organisms. The general processes behind those patterns are likely to be comparable across taxa and major global biomes.


Marine Biology | 1982

Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient

Ulf Larsson; Åke Hagström

The distribution of phytoplankton primary production into four size fractions (>10 μm, 10-3 μm, 3-0.2 μm and <0.2 μm), the utilization of algal exudates by bacteria and the bacterial production were studied in a eutrophication gradient in the northern Baltic proper. The polluted area exhibits substantially increased nutrient, especially nitrogen, levels while only minor differences occur in salinity and temperature regimes. Total primary production was 160 g C · m-2 · yr-1 at the control station and about 275 g C · m-2 · yr-1 at the eutrophicated stations. The estimated total exudate release was 16% of the totally fixed 14CO2 in the control area and 12% in the eutrophicated area (including the estimated bacterial uptake of exudates). The difference in14CO2 uptake rates between incubation of previously filtered water (<3, <2, <1 μm) and unfiltered water was used to estimate bacterial uptake of phytoplankton exudates which were found to contribute about half of the estimated bacterial carbon requirement in both areas. Bacterial production was estimated by the frequency of dividing cells (FDC) method as being 38 g C · m-2 · yr-1 at the control station and 50 g C · m-2 · yr-1 at the eutrophicated stations. To estimate the mean in situ bacterial cell volume a correlation between FDC and cell volume was used. The increased annual primary production in the eutrophicated area was due mainly to higher production during spring and autumn, largely by phytoplankton cells (mainly diatoms) retained by a 10 μm filter. Primary production duringsummer was similarin the two areas, as was the distribution on different size fractions. This could possibly explain the similar bacterial production in the trophic layers at all stations since the bulk of bacterial production occurs during summer. It was demonstrated that selective filtration does not quantitatively separate photoautotrophs and bacteria. A substantial fraction of the primary production occurs in the size fraction <3 μm. The primary production encountered in the 3-0.2 μm fraction was due to abundant picoplankton (0.5 to 8 · 107 ind · l-1), easily passing a 3 μm filter. The picoplankton was estimated to constitute up to 25% of the total phytoplankton biomass in the control area and up to 10% in the eutrophicated area.


Marine Biology | 1979

Phytoplankton exudate release as an energy source for the growth of pelagic bacteria

Ulf Larsson; Åke Hagström

The release of dissolved organic carbon (DOC) from phytolankton during photosynthesis, and the utilization of this carbon by planktonic bacteria, was studied using 14CO2 and selective filtration. Natural sea water samples from a coastal area of the Northern Baltic Sea were incubated in the laboratory for detailed studies, and in situ for estimation of annual dynamics. In a laboratory incubation (at +1°C) the concentration of 14C-labelled dissolved organic carbon increased for about 2 h and then reached a steady state, representing about 0. 1% of the total DOC. Labelled organic carbon in the phytoplankton and bacterial fractions continued to increase almost linearly. The continuous increase in the bacterial fraction is thought to represent almost instantaneous utilization of the DOC released from the phytoplankton during photosynthesis. As an annual average, in 4 h in situ incubations, about 65% of the labelled organic carbon was found in the phytoplankton fraction (>3 μm), about 27% in the bacterial fraction (0.2 to 3 μm) and the remaining 8% as DOC (<0.2 μm). Large variations in these percentages were recorded. The measured annual primary production was 93 g C m-2 (March to December), and the estimated bacterial production due to phytoplankton exudates 29 g C m-2. This represents a release of DOC of about 45% of the corrected annual primary production of 110 g C m-2 (assuming a bacterial growth efficiency of 0.6).


Microbial Ecology | 1994

Bacteria-organic matter coupling and its significance for oceanic carbon cycling

Farooq Azam; David C. Smith; Grieg F. Steward; Åke Hagström

This paper synthesizes current ideas on the role of the microbial loop in carbon fluxes in the ocean and proposes some directions for future research. Organic matter flux into bacteria is highly variable, which can significantly influence the pathways of carbon flow in the ocean. A goal for future research is to elucidate the mechanistic bases of bacteria-organic matter coupling. This research should take into consideration the micrometer-scale distribution of bacteria and the composition, structure, and dynamics of the organic matter field in the bacteriums microhabitat. The ideas on the interactions of bacteria with the particulate organic phase need to be revised in view of recent findings of highly abundant, previously unknown particles ranging in size from nanometers to hundreds of micrometers. The “hot-spots” in the distribution of organic matter and remineralized nutrients can influence the rates as well as the direction of biogeochemical fluxes. Slow-to-degrade dissolved organic matter (DOM) may be produced because of loose bacteria-organic matter coupling resulting in DOM storage. Its use at a later time and place has profound implications for carbon fluxes and food web dynamics. A fundamental research need for the future is to understand the ecological interactions among the members of the microbial loop in an appropriate microhabitat context. While this goal was previously intractable, new molecular and optical techniques should make it possible to understand the biogeochemical activities of the microbial loop in terms of the ecology and evolution of pelagic microbial communities.


Applied and Environmental Microbiology | 2002

Use of 16S ribosomal DNA for delineation of marine bacterioplankton species.

Åke Hagström; Thomas Pommier; Forest Rohwer; Karin Simu; Willem Stolte; Dominika Svensson; Ulla Li Zweifel

ABSTRACT All of the marine bacterioplankton-derived 16S ribosomal DNA sequences previously deposited in GenBank were reanalyzed to determine the number of bacterial species in the oceanic surface waters. These sequences have been entered into the database since 1990. The rate of new additions reached a peak in 1999 and subsequently leveled off, suggesting that much of the marine microbial species richness has been sampled. When the GenBank sequences were dereplicated by using 97% similarity as a cutoff, 1,117 unique ribotypes were found. Of the unique sequences, 609 came from uncultured environmental clones and 508 came from cultured bacteria. We conclude that the apparent bacterioplankton species richness is relatively low.


Microbial Ecology | 2001

Effects of Bacteriophages on the Population Dynamics of Four Strains of Pelagic Marine Bacteria

M. Middelboe; Åke Hagström; N. Blackburn; B. Sinn; U. Fischer; N.H. Borch; Jarone Pinhassi; K. Simu; M.G. Lorenz

Viral lysis of specific bacterial populations has been suggested to be an important factor for structuring marine bacterioplankton communities. In the present study, the influence of bacteriophages on the diversity and population dynamics of four marine bacterial phage-host systems was studied experimentally in continuous cultures and theoretically by a mathematical model. By use of whole genome DNA hybridization toward community DNA, we analyzed the dynamics of individual bacterial host populations in response to the addition of their specific phage in continuous cultures of mixed bacterial assemblages. In these experiments, viral lysis had only temporary effects on the dynamics and diversity of the individual bacterial host species. Following the initial lysis of sensitive host cells, growth of phage-resistant clones of the added bacteria resulted in a distribution of bacterial strains in the phage-enriched culture that was similar to that in the control culture without phages after about 50-60 h incubation. Consequently, after a time frame of 5-10 generations after lysis, it was the interspecies competition rather than viral lysis of specific bacterial strains that was the driving force in the regulation of bacterial species composition in these experiments. The clonal diversity, on the other hand, was strongly influenced by viral activity, since the clonal composition of the four species in the phage-enriched culture changed completely from phage-sensitive to phage-resistant clones. The model simulation predicted that viral lysis had a strong impact on the population dynamics, the species composition, and the clonal composition of the bacterial community over longer time scales (weeks). However, according to the model, the overall density of bacteria in the system was not affected by phages, since resistant clones complemented the fluctuations caused by viral lysis. Based on the model analysis, we therefore suggest that viral lysis can have a strong influence on the dynamics of bacterial populations in planktonic marine systems.


Applied and Environmental Microbiology | 2008

The Native Bacterioplankton Community in the Central Baltic Sea Is Influenced by Freshwater Bacterial Species

Lasse Riemann; C. Leitet; Thomas Pommier; Karin Simu; Karin Holmfeldt; Ulf Larsson; Åke Hagström

ABSTRACT The Baltic Sea is one of the largest brackish environments on Earth. Despite extensive knowledge about food web interactions and pelagic ecosystem functioning, information about the bacterial community composition in the Baltic Sea is scarce. We hypothesized that due to the eutrophic low-salinity environment and the long water residence time (>5 years), the bacterioplankton community from the Baltic proper shows a native “brackish” composition influenced by both freshwater and marine phylotypes. The bacterial community composition in surface water (3-m depth) was examined at a single station throughout a full year. Denaturing gradient gel electrophoresis (DGGE) showed that the community composition changed over the year. Further, it indicated that at the four extensive samplings (16S rRNA gene clone libraries and bacterial isolates from low- and high-nutrient agar plates and seawater cultures), different bacterial assemblages associated with different environmental conditions were present. Overall, the sequencing of 26 DGGE bands, 160 clones, 209 plate isolates, and 9 dilution culture isolates showed that the bacterial assemblage in surface waters of the central Baltic Sea was dominated by Bacteroidetes but exhibited a pronounced influence of typical freshwater phylogenetic groups within Actinobacteria, Verrucomicrobia, and Betaproteobacteria and a lack of typical marine taxa. This first comprehensive analysis of bacterial community composition in the central Baltic Sea points to the existence of an autochthonous estuarine community uniquely adapted to the environmental conditions prevailing in this brackish environment.


PLOS ONE | 2011

Nitrogenase Gene Amplicons from Global Marine Surface Waters Are Dominated by Genes of Non-Cyanobacteria

Hanna Farnelid; Anders F. Andersson; Stefan Bertilsson; Waleed Abu Al-Soud; Lars Hestbjerg Hansen; Søren J. Sørensen; Grieg F. Steward; Åke Hagström; Lasse Riemann

Cyanobacteria are thought to be the main N2-fixing organisms (diazotrophs) in marine pelagic waters, but recent molecular analyses indicate that non-cyanobacterial diazotrophs are also present and active. Existing data are, however, restricted geographically and by limited sequencing depths. Our analysis of 79,090 nitrogenase (nifH) PCR amplicons encoding 7,468 unique proteins from surface samples (ten DNA samples and two RNA samples) collected at ten marine locations world-wide provides the first in-depth survey of a functional bacterial gene and yield insights into the composition and diversity of the nifH gene pool in marine waters. Great divergence in nifH composition was observed between sites. Cyanobacteria-like genes were most frequent among amplicons from the warmest waters, but overall the data set was dominated by nifH sequences most closely related to non-cyanobacteria. Clusters related to Alpha-, Beta-, Gamma-, and Delta-Proteobacteria were most common and showed distinct geographic distributions. Sequences related to anaerobic bacteria (nifH Cluster III) were generally rare, but preponderant in cold waters, especially in the Arctic. Although the two transcript samples were dominated by unicellular cyanobacteria, 42% of the identified non-cyanobacterial nifH clusters from the corresponding DNA samples were also detected in cDNA. The study indicates that non-cyanobacteria account for a substantial part of the nifH gene pool in marine surface waters and that these genes are at least occasionally expressed. The contribution of non-cyanobacterial diazotrophs to the global N2 fixation budget cannot be inferred from sequence data alone, but the prevalence of non-cyanobacterial nifH genes and transcripts suggest that these bacteria are ecologically significant.


Applied and Environmental Microbiology | 2010

Annual variations in the diversity, viability, and origin of airborne bacteria.

Camilla Fahlgren; Åke Hagström; Douglas Nilsson; Ulla Li Zweifel

ABSTRACT The presence of bacteria in aerosols has been known for centuries, but information on their identity and role in dispersing microbial traits is still limited. This study monitored the airborne bacterial community during an annual survey using samples collected from a 25-m tower near the Baltic Sea coast. The number of CFU was estimated using agar plates while the most probable number (MPN) of viable bacteria was estimated using dilution-to-extinction culturing assays (DCAs). The MPN and CFU values produced quantitatively similar results, displaying a pronounced seasonal pattern, with the highest numbers in winter. The most dominant bacteria growing in the DCAs all formed colonies on agar plates, were mostly pigmented (80%), and closely resembled (>97%) previously cultured bacteria based on their 16S rRNA gene sequences. 16S rRNA gene clone libraries were constructed on eight occasions during the survey; these revealed a highly diverse community with a few abundant operational taxonomic units (OTUs) and a long tail of rare OTUs. A majority of the cloned sequences (60%) were also most closely related to previously “cultured” bacteria. Thus, both culture-dependent and culture-independent techniques indicated that bacteria able to form colonies on agar plates predominate in the atmosphere. Both the DCAs and clone libraries indicated the dominance of bacteria belonging to the genera Sphingomonas sp. and Pseudomonas sp. on several sampling occasions. Potentially pathogenic strains as well as sequences closely resembling bacteria known to act as ice nuclei were found using both approaches. The origin of the sampled air mass was estimated using backward trajectories, indicating a predominant marine source.


PLOS ONE | 2014

Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

Chris L. Dupont; John Larsson; Shibu Yooseph; Karolina Ininbergs; Johannes Goll; Johannes Asplund-Samuelsson; John P. McCrow; Narin Celepli; Lisa Zeigler Allen; Martin Ekman; Andrew J. Lucas; Åke Hagström; Mathangi Thiagarajan; Björn Brindefalk; Alexander R. Richter; Anders F. Andersson; Aaron Tenney; Daniel Lundin; Andrey Tovchigrechko; Johan A. A. Nylander; Daniel Brami; Jonathan H. Badger; Andrew E. Allen; Douglas B. Rusch; Jeff Hoffman; Erling Norrby; Robert Friedman; Jarone Pinhassi; J. Craig Venter; Birgitta Bergman

Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

Collaboration


Dive into the Åke Hagström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farooq Azam

University of California

View shared research outputs
Top Co-Authors

Avatar

Lasse Riemann

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jed A. Fuhrman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Anders F. Andersson

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge