Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarone Pinhassi is active.

Publication


Featured researches published by Jarone Pinhassi.


Applied and Environmental Microbiology | 2004

Changes in Bacterioplankton Composition under Different Phytoplankton Regimens

Jarone Pinhassi; Maria Montserrat Sala; Harry Havskum; Francesc Peters; Òscar Guadayol; Andrea Malits; Cèlia Marrasé

ABSTRACT The results of empirical studies have revealed links between phytoplankton and bacterioplankton, such as the frequent correlation between chlorophyll a and bulk bacterial abundance and production. Nevertheless, little is known about possible links at the level of specific taxonomic groups. To investigate this issue, seawater microcosm experiments were performed in the northwestern Mediterranean Sea. Turbulence was used as a noninvasive means to induce phytoplankton blooms dominated by different algae. Microcosms exposed to turbulence became dominated by diatoms, while small phytoflagellates gained importance under still conditions. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments showed that changes in phytoplankton community composition were followed by shifts in bacterioplankton community composition, both as changes in the presence or absence of distinct bacterial phylotypes and as differences in the relative abundance of ubiquitous phylotypes. Sequencing of DGGE bands showed that four Roseobacter phylotypes were present in all microcosms. The microcosms with a higher proportion of phytoflagellates were characterized by four phylotypes of the Bacteroidetes phylum: two affiliated with the family Cryomorphaceae and two with the family Flavobacteriaceae. Two other Flavobacteriaceae phylotypes were characteristic of the diatom-dominated microcosms, together with one Alphaproteobacteria phylotype (Roseobacter) and one Gammaproteobacteria phylotype (Methylophaga). Phylogenetic analyses of published Bacteroidetes 16S rRNA gene sequences confirmed that members of the Flavobacteriaceae are remarkably responsive to phytoplankton blooms, indicating these bacteria could be particularly important in the processing of organic matter during such events. Our data suggest that quantitative and qualitative differences in phytoplankton species composition may lead to pronounced differences in bacterioplankton species composition.


Nature | 2007

Light stimulates growth of proteorhodopsin-containing marine Flavobacteria

Laura Gómez-Consarnau; José M. González; Montserrat Coll-Lladó; Pontus Gourdon; Torbjörn Pascher; Richard Neutze; Carlos Pedrós-Alió; Jarone Pinhassi

Proteorhodopsins are bacterial light-dependent proton pumps. Their discovery within genomic material from uncultivated marine bacterioplankton caused considerable excitement because it indicated a potential phototrophic function within these organisms, which had previously been considered strictly chemotrophic. Subsequent studies established that sequences encoding proteorhodopsin are broadly distributed throughout the world’s oceans. Nevertheless, the role of proteorhodopsins in native marine bacteria is still unknown. Here we show, from an analysis of the complete genomes of three marine Flavobacteria, that cultivated bacteria in the phylum Bacteroidetes, one of the principal components of marine bacterioplankton, contain proteorhodopsin. Moreover, growth experiments in both natural and artificial seawater (low in labile organic matter, which is typical of the world’s oceans) establish that exposure to light results in a marked increase in the cell yield of one such bacterium (Dokdonia sp. strain MED134) when compared with cells grown in darkness. Thus, our results show that the phototrophy conferred by proteorhodopsin can provide critical amounts of energy, not only for respiration and maintenance but also for active growth of marine bacterioplankton in their natural environment.


The ISME Journal | 2013

Ecology of marine Bacteroidetes: a comparative genomics approach

Beatriz Fernández-Gómez; Michael Richter; Margarete Schüler; Jarone Pinhassi; Silvia G. Acinas; José M. González; Carlos Pedrós-Alió

Bacteroidetes are commonly assumed to be specialized in degrading high molecular weight (HMW) compounds and to have a preference for growth attached to particles, surfaces or algal cells. The first sequenced genomes of marine Bacteroidetes seemed to confirm this assumption. Many more genomes have been sequenced recently. Here, a comparative analysis of marine Bacteroidetes genomes revealed a life strategy different from those of other important phyla of marine bacterioplankton such as Cyanobacteria and Proteobacteria. Bacteroidetes have many adaptations to grow attached to particles, have the capacity to degrade polymers, including a large number of peptidases, glycoside hydrolases (GHs), glycosyl transferases, adhesion proteins, as well as the genes for gliding motility. Several of the polymer degradation genes are located in close association with genes for TonB-dependent receptors and transducers, suggesting an integrated regulation of adhesion and degradation of polymers. This confirmed the role of this abundant group of marine bacteria as degraders of particulate matter. Marine Bacteroidetes had a significantly larger number of proteases than GHs, while non-marine Bacteroidetes had equal numbers of both. Proteorhodopsin containing Bacteroidetes shared two characteristics: small genome size and a higher number of genes involved in CO2 fixation per Mb. The latter may be important in order to survive when floating freely in the illuminated, but nutrient-poor, ocean surface.


Applied and Environmental Microbiology | 2003

Differential Growth Response of Colony-Forming α- and γ-Proteobacteria in Dilution Culture and Nutrient Addition Experiments from Lake Kinneret (Israel), the Eastern Mediterranean Sea, and the Gulf of Eilat

Jarone Pinhassi; Tom Berman

ABSTRACT Even though it is widely accepted that bacterioplankton growth in lakes and marine ecosystems is determined by the trophic status of the systems, knowledge of the relationship between nutrient concentrations and growth of particular bacterial species is almost nonexistent. To address this question, we performed a series of culture experiments with water from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat (northern Red Sea). In the initial water samples, the proportion of CFU was typically <0.002% of the 4′,6′-diamidino-2-phenylindole (DAPI) counts. During incubation until the early stationary phase, the proportion of CFU increased to 20% of the DAPI counts and to 2 to 15% of the DAPI counts in unenriched lake water and seawater dilution cultures, respectively. Sequencing of the 16S ribosomal DNA of colony-forming bacteria in these cultures consistently revealed an abundance of α-proteobacteria, but notable phylogenetic differences were found at the genus level. Marine dilution cultures were dominated by bacteria in the Roseobacter clade, while lake dilution cultures were dominated by bacteria affiliated with the genera Sphingomonas and Caulobacter. In nutrient (glucose, ammonium, phosphate) addition experiments the CFU comprised 20 to 83% of the newly grown cells. In these incubation experiments fast-growing γ-proteobacteria dominated; in the marine experiments primarily different Vibrio and Alteromonas species appeared, while in the lake water experiments species of the genera Shewanella, Aeromonas, and Rheinheimera grew. These results suggest that major, but different, γ-proteobacterial genera in both freshwater and marine environments have a preference for elevated concentrations of nutrients and easily assimilated organic carbon sources but are selectively outcompeted by α-proteobacteria in the presence of low nutrient concentrations.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria)

José M. González; Beatriz Fernández-Gómez; Antoni Fernández-Guerra; Laura Gómez-Consarnau; Olga Sánchez; Montserrat Coll-Lladó; Javier Campo; Lorena Escudero; Raquel Rodríguez-Martínez; Laura Alonso-Sáez; Mikel Latasa; Ian T. Paulsen; Olga I. Nedashkovskaya; Itziar Lekunberri; Jarone Pinhassi; Carlos Pedrós-Alió

Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO2 fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.


PLOS Biology | 2010

Proteorhodopsin Phototrophy Promotes Survival of Marine Bacteria during Starvation

Laura Gómez-Consarnau; Neelam Akram; Kristoffer Lindell; Anders Pedersen; Richard Neutze; Debra L. Milton; José M. González; Jarone Pinhassi

Mutational analysis provides direct evidence for the link between proteorhodopsin light-harvesting and enhanced survival of marine bacteria.


Emerging Infectious Diseases | 2008

Dissemination of multidrug-resistant bacteria into the Arctic

Maria Sjölund; Jonas Bonnedahl; Jorge Hernandez; Stina Bengtsson; Gunilla Cederbrant; Jarone Pinhassi; Gunnar Kahlmeter; Bjoern Olsen

We show that Escherichia coli isolates originating from Arctic birds carry antimicrobial drug resistance determinants. This finding implies that dissemination of drug-resistant bacteria is worldwide. Resistance genes can be found even in a region where no selection pressure for resistance development exists.


Microbial Ecology | 2001

Effects of Bacteriophages on the Population Dynamics of Four Strains of Pelagic Marine Bacteria

M. Middelboe; Åke Hagström; N. Blackburn; B. Sinn; U. Fischer; N.H. Borch; Jarone Pinhassi; K. Simu; M.G. Lorenz

Viral lysis of specific bacterial populations has been suggested to be an important factor for structuring marine bacterioplankton communities. In the present study, the influence of bacteriophages on the diversity and population dynamics of four marine bacterial phage-host systems was studied experimentally in continuous cultures and theoretically by a mathematical model. By use of whole genome DNA hybridization toward community DNA, we analyzed the dynamics of individual bacterial host populations in response to the addition of their specific phage in continuous cultures of mixed bacterial assemblages. In these experiments, viral lysis had only temporary effects on the dynamics and diversity of the individual bacterial host species. Following the initial lysis of sensitive host cells, growth of phage-resistant clones of the added bacteria resulted in a distribution of bacterial strains in the phage-enriched culture that was similar to that in the control culture without phages after about 50-60 h incubation. Consequently, after a time frame of 5-10 generations after lysis, it was the interspecies competition rather than viral lysis of specific bacterial strains that was the driving force in the regulation of bacterial species composition in these experiments. The clonal diversity, on the other hand, was strongly influenced by viral activity, since the clonal composition of the four species in the phage-enriched culture changed completely from phage-sensitive to phage-resistant clones. The model simulation predicted that viral lysis had a strong impact on the population dynamics, the species composition, and the clonal composition of the bacterial community over longer time scales (weeks). However, according to the model, the overall density of bacteria in the system was not affected by phages, since resistant clones complemented the fluctuations caused by viral lysis. Based on the model analysis, we therefore suggest that viral lysis can have a strong influence on the dynamics of bacterial populations in planktonic marine systems.


PLOS ONE | 2014

Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

Chris L. Dupont; John Larsson; Shibu Yooseph; Karolina Ininbergs; Johannes Goll; Johannes Asplund-Samuelsson; John P. McCrow; Narin Celepli; Lisa Zeigler Allen; Martin Ekman; Andrew J. Lucas; Åke Hagström; Mathangi Thiagarajan; Björn Brindefalk; Alexander R. Richter; Anders F. Andersson; Aaron Tenney; Daniel Lundin; Andrey Tovchigrechko; Johan A. A. Nylander; Daniel Brami; Jonathan H. Badger; Andrew E. Allen; Douglas B. Rusch; Jeff Hoffman; Erling Norrby; Robert Friedman; Jarone Pinhassi; J. Craig Venter; Birgitta Bergman

Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.


Applied and Environmental Microbiology | 2004

Use of microautoradiography combined with fluorescence in situ hybridization to determine dimethylsulfoniopropionate incorporation by marine bacterioplankton taxa.

Maria Vila; Rafel Simó; Ronald P. Kiene; Jarone Pinhassi; José M. González; Mary Ann Moran; Carlos Pedrós-Alió

ABSTRACT The fraction of planktonic heterotrophic bacteria capable of incorporating dissolved dimethylsulfoniopropionate (DMSP) and leucine was determined at two coastal sites by microautoradioagraphy (AU). In Gulf of Mexico seawater microcosm experiments, the proportion of prokaryotes that incorporated sulfur from [35S]DMSP ranged between 27 and 51% of 4′,6-diamidino-2-phenylindole (DAPI)-positive cells, similar to or slightly lower than the proportion incorporating [3H]leucine. In the northwest Mediterranean coast, the proportion of cells incorporating sulfur from [35S]DMSP increased from 5 to 42% from January to March, coinciding with the development of a phytoplankton bloom. At the same time, the proportion of cells incorporating [3H]leucine increased from 21 to 40%. The combination of AU and fluorescence in situ hybridization (FISH) revealed that the Roseobacter clade (α-proteobacteria) accounted for 13 to 43% of the microorganisms incorporating [35S]DMSP at both sampling sites. Significant uptake of sulfur from DMSP was also found among members of the γ-proteobacteria and Cytophaga-Flavobacterium groups. Roseobacter and γ-proteobacteria exhibited the highest percentage of DAPI-positive cells incorporating 35S from DMSP (around 50%). Altogether, the application of AU with [35S]DMSP combined with FISH indicated that utilization of S from DMSP is a widespread feature among active marine bacteria, comparable to leucine utilization. These results point toward DMSP as an important substrate for a broad and diverse fraction of marine bacterioplankton.

Collaboration


Dive into the Jarone Pinhassi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josep M. Gasol

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Pedrós-Alió

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Gómez-Consarnau

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Anders F. Andersson

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge