Akhee Sarker-Nag
University of Oklahoma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Akhee Sarker-Nag.
PLOS ONE | 2014
Shrestha Priyadarsini; Jesper Hjortdal; Akhee Sarker-Nag; Henrik Sejersen; John M. Asara; Dimitrios Karamichos
Keratoconus (KC) is a bilateral degenerative disease of the cornea characterized by corneal bulging, stromal thinning, and scarring. The etiology of the disease is unknown. In this study, we identified a new biomarker for KC that is present in vivo and in vitro. In vivo, tear samples were collected from age-matched controls with no eye disease (n = 36) and KC diagnosed subjects (n = 17). Samples were processed for proteomics using LC-MS/MS. In vitro, cells were isolated from controls (Human Corneal Fibroblasts-HCF) and KC subjects (Human Keratoconus Cells-HKC) and stimulated with a Vitamin C (VitC) derivative for 4 weeks, and with one of the three transforming growth factor-beta (TGF-β) isoforms. Samples were analyzed using real-time PCR and Western Blots. By using proteomics analysis, the Gross cystic disease fluid protein-15 (GCDFP-15) or prolactin-inducible protein (PIP) was found to be the best independent biomarker able to discriminate between KC and controls. The intensity of GCDFP-15/PIP was significantly higher in healthy subjects compared to KC-diagnosed. Similar findings were seen in vitro, using a 3D culture model. All three TGF-β isoforms significantly down-regulated the expression of GCDFP-15/PIP. Zinc-alpha-2-glycoprotein (AZGP1), a protein that binds to PIP, was identified by proteomics and cell culture to be highly regulated. In this study by different complementary techniques we confirmed the potential role of GCDFP-15/PIP as a novel biomarker for KC disease. It is likely that exploring the GCDFP-15/PIP-AZGP1 interactions will help better understand the mechanism of KC disease.
Scientific Reports | 2015
Tina B. McKay; D. Lyon; Akhee Sarker-Nag; Shrestha Priyadarsini; John M. Asara; Dimitrios Karamichos
Keratoconus(KC) is an ecstatic corneal disease leading to corneal-thinning and the formation of a cone-like cornea. Elevated lactate levels, increased oxidative stress, and myofibroblast formation have all been previously reported. In the current study, we assess the role of Quercetin on collagen secretion and myofibroblast formation in KC in vitro. Human corneal fibroblasts(HCFs) and human keratoconus cells(HKCs) were treated with a stable Vitamin C derivative and cultured for 4 weeks, stimulating formation of a self-assembled extracellular matrix. All samples were analyzed using Western blots and targeted tandem mass spectrometry. Our data showed that Quercetin significantly down regulates myofibroblast differentiation and fibrotic markers, such as α-smooth muscle actin (α-SMA) and Collagen III (Col III), in both HCFs and HKCs. Collagen III secretion was reduced 80% in both HCFs and HKCs following Quercetin treatment. Furthermore, Quercetin reduced lactate production by HKCs to normal HCF levels. Quercetin down regulated TGF-βR2 and TGF-β2 expression in HKCs suggesting a significant link to the TGF-β pathway. These results assert that Quercetin is a key regulator of fibrotic markers and ECM assembly by modulating cellular metabolism and TGF-β signaling. Our study suggests that Quercetin is a potential therapeutic for treatment of corneal dystrophies, such as KC.
Experimental Eye Research | 2016
Shrestha Priyadarsini; Tina B. McKay; Akhee Sarker-Nag; Jeremy C. Allegood; Charles E. Chalfant; Jian Xing Ma; Dimitrios Karamichos
Prolonged hyperglycemia during diabetes mellitus can cause severe ophthalmic complications affecting both the anterior and posterior ocular segments leading to impaired vision or blindness. Diabetes-induced corneal pathologies are associated with decreased wound healing capacity, corneal edema, and altered epithelial basement membrane. The mechanism by which diabetes modulates structure and function within the corneal stroma are unknown. In our study, we characterized the effects of diabetes on extracellular matrix, lipid transport, and cellular metabolism by defining the entire metabolome and lipidome of Type 1 and Type 2 human diabetic corneal stroma. Significant increases in Collagen I and III were found in diabetic corneas suggesting that diabetes promotes defects in matrix structure leading to scarring. Furthermore, increased lipid content, including sphingosine-1-phosphate and dihydrosphingosine, in diabetic corneas compared to healthy controls were measured suggesting altered lipid retention. Metabolomics analysis identified elevated tryptophan metabolites, independent of glucose metabolism, which correlated with upregulation of the Kynurenine pathway in diabetic corneas. We also found significant upregulation of novel biomarkers aminoadipic acid, D,L-pipecolic acid, and dihydroorotate. Our study links aberrant tryptophan metabolism to end-stage pathologies associated with diabetes indicating the potential of the Kynurenine pathway as a therapeutic target for inhibiting diabetes-associated defects in the eye.
Current Eye Research | 2015
Shrestha Priyadarsini; Akhee Sarker-Nag; Jeremy C. Allegood; Charles E. Chalfant; Dimitrios Karamichos
Abstract Purpose: Diabetes mellitus (DM) is characterized by high blood sugar levels over a prolonged period. Long term complications include but not limited heart disease, stroke, kidney failure, and ocular damage. An estimated 382 million people are diagnosed with Type 2 DM accounting for 90% of the cases. Common corneal dysfunctions associated with DM result in impaired vision due to decreased wound healing, corneal edema, and altered epithelial basement membrane. Lipids play a fundamental role in tissue metabolism and disease states. We attempt to determine the role of sphingolipids (SPL) in human Type I and Type II diabetic corneas. Materials and Methods: Cadaver corneas from healthy (non-diabetic/no ocular trauma), Type I (T1DM), and Type II diabetic (T2DM) donors were obtained and processed for lipidomics using LC-MS/MS. Results: Our data show significant differences in the SPL composition between control, T1DM and T2DM corneas. Both T1DM and T2DM showed a 10-folddownregulation of sphingomyelin(SM), 5-fold up regulation of Ceramides (Cer) and 2-fold upregulation of monohexosylceramides (MHC). Differences were also seen in total amounts of SPL where Cer was increased by approximately 3 fold in both T1DM and T2DM where SM decreased by 50% in both T1DM and T2DM when compared to healthy controls. No differences were seen in MHC amounts. Conclusions: Overall, our data indicate major differences in SPL distribution in human diabetic corneas. Information on the sphingolipids role in cornea, corneal cell physiology, and diseases are very limitedwhich highlights the importance of these findings.
PLOS ONE | 2016
Shrestha Priyadarsini; Akhee Sarker-Nag; Tyler Rowsey; Jian Xing Ma; Dimitrios Karamichos
Purpose To establish an in vitro model that would mirror the in vivo corneal stromal environment in diabetes (DM) patients. Methods Human corneal fibroblasts from Healthy (HCFs), Type 1DM (T1DM) and Type 2DM (T2DM) donors were isolated and cultured for 4 weeks with Vitamin C stimulation in order to allow for extracellular matrix (ECM) secretion and assembly. Results Our data indicated altered cellular morphology, increased cellular migration, increased ECM assembly, and severe mitochondrial damage in both T1DM and T2DMs when compared to HCFs. Furthermore, we found significant downregulation of Collagen I and Collagen V expression in both T1DM and T2DMs. Furthermore, a significant up regulation of fibrotic markers was seen, including α-smooth muscle actin in T2DM and Collagen III in both T1DM and T2DMs. Metabolic analysis suggested impaired Glycolysis and Tricarboxylic acid cycle (TCA) pathway. Conclusion DM has significant effects on physiological and clinical aspects of the human cornea. The benefits in developing and fully characterizing our 3D in vitro model are enormous and might provide clues for the development of novel therapeutics.
Cell Biochemistry and Function | 2015
Tina B. McKay; Akhee Sarker-Nag; Desiree’ Lyon; John M. Asara; Dimitrios Karamichos
Corneal scarring is the result of a disease, infection or injury. The resulting scars cause significant loss of vision or even blindness. To‐date, the most successful treatment is corneal transplantation, but it does not come without side effects. One of the corneal dystrophies that are correlated with corneal scarring is keratoconus (KC). The onset of the disease is still unknown; however, altered cellular metabolism has been linked to promoting the fibrotic phenotype and therefore scarring. We have previously shown that human keratoconus cells (HKCs) have altered metabolic activity when compared to normal human corneal fibroblasts (HCFs). In our current study, we present evidence that quercetin, a natural flavonoid, is a strong candidate for regulating metabolic activity of both HCFs and HKCs in vitro and therefore a potential therapeutic to target the altered cellular metabolism characteristic of HKCs. Targeted mass spectrometry‐based metabolomics was performed on HCFs and HKCs with and without quercetin treatment in order to identify variations in metabolite flux. Overall, our study reveals a novel therapeutic target OF Quercetin on corneal stromal cell metabolism in both healthy and diseased states. Clearly, further studies are necessary in order to dissect the mechanism of action of quercetin. Copyright
Current Eye Research | 2016
Akhee Sarker-Nag; Audrey E. K. Hutcheon; Dimitrios Karamichos
ABSTRACT Purpose: Keratoconus (KC) is a complex corneal dystrophy with multifactorial etiology. Previous studies have shown evidence of mitochondrial abnormalities in KC; however, the exact cause of these abnormalities remains unknown. The aim of this study was to identify if transforming growth factor-β (TGF-β) isoforms play a role in the regulation of mitochondrial proteins in human KC cells (HKC). Materials and Methods: Human corneal fibroblasts (HCF) and HKC were isolated and cultured for 4 weeks in three different conditions: (a) Control: MEM + 10%FBS, (b) MEM + 10%FBS + TGF-β1 and (c) MEM + 10%FBS + TGF-β3. All samples were processed for mitochondrial damage analysis using real-time PCR. Results: We quantified and analyzed 84 mitochondrial and five housekeeping genes in HCFs and HKCs. Our data showed that when TGF-β1 and/or TGF-β3 were compared with control in HCFs, nine genes were significantly different; however, no genes were significantly regulated by the TGF-β isoforms in HKCs. Significant differences were also seen in seven genes when HFCs were compared with HKCs, in all three conditions. Conclusions: Overall, our data support the growing consensus that mitochondrial dysfunction is a key player in KC disease. These in vitro data show clear links between mitochondrial function and TGF-β isoforms, with TGF-β1 severely disrupting KC-mitochondrial function, while TGF-β3 maintained it, thus suggesting that TGF-β may play a role in KC-disease treatment.
Journal of Lipid Research | 2017
Hui Qi; Shrestha Priyadarsini; Sarah E. Nicholas; Akhee Sarker-Nag; Jeremy C. Allegood; Charles E. Chalfant; Nawajes A. Mandal; Dimitrios Karamichos
The pathophysiology of human keratoconus (KC), a bilateral progressive corneal disease leading to protrusion of the cornea, stromal thinning, and scarring, is not well-understood. In this study, we investigated a novel sphingolipid (SPL) signaling pathway through which KC may be regulated. Using human corneal fibroblasts (HCFs) and human KC cells (HKCs), we examined the SPL pathway modulation. Both cell types were stimulated by the three transforming growth factor (TGF)-β isoforms: TGF-β1 (T1), TGF-β2 (T2), and TGF-β3 (T3). All samples were analyzed using lipidomics and real-time PCR. Our data showed that HKCs have increased levels of signaling SPLs, ceramide (Cer), and sphingosine 1-phosphate (S1P). Treatment with T1 reversed the increase in Cer in HKCs and treatment with T3 reversed the increase in S1P. S1P3 receptor mRNA levels were also significantly upregulated in HKCs, but were reduced to normal levels following T3 treatment. Furthermore, stimulation with Cer and S1P led to significant upregulation of fibrotic markers in HCFs, but not in HKCs. Additionally, stimulation with a Cer synthesis inhibitor (FTY720) led to significant downregulation of specific fibrotic markers in HKCs (TGF-β1, collagen type III, and α smooth muscle actin) without an effect on healthy HCFs, suggesting a causative role of Cer and S1P in fibrogenesis. Overall, this study suggests an association of the SPL signaling pathway in KC disease and its relation with the TGF-β pathway.
Experimental Eye Research | 2015
Dimitrios Karamichos; James D. Zieske; Henrik Sejersen; Akhee Sarker-Nag; John M. Asara; Jesper Hjortdal
Molecular Vision | 2015
Shrestha Priyadarsini; Tina B. McKay; Akhee Sarker-Nag; Dimitrios Karamichos