Akifumi Yamashita
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Akifumi Yamashita.
PLOS ONE | 2015
Tsuyoshi Sekizuka; Akifumi Yamashita; Yoshiro Murase; Tomotada Iwamoto; Satoshi Mitarai; Seiya Kato; Makoto Kuroda
Whole-genome sequencing (WGS) with next-generation DNA sequencing (NGS) is an increasingly accessible and affordable method for genotyping hundreds of Mycobacterium tuberculosis (Mtb) isolates, leading to more effective epidemiological studies involving single nucleotide variations (SNVs) in core genomic sequences based on molecular evolution. We developed an all-in-one web-based tool for genotyping Mtb, referred to as the Total Genotyping Solution for TB (TGS-TB), to facilitate multiple genotyping platforms using NGS for spoligotyping and the detection of phylogenies with core genomic SNVs, IS6110 insertion sites, and 43 customized loci for variable number tandem repeat (VNTR) through a user-friendly, simple click interface. This methodology is implemented with a KvarQ script to predict MTBC lineages/sublineages and potential antimicrobial resistance. Seven Mtb isolates (JP01 to JP07) in this study showing the same VNTR profile were accurately discriminated through median-joining network analysis using SNVs unique to those isolates. An additional IS6110 insertion was detected in one of those isolates as supportive genetic information in addition to core genomic SNVs. The results of in silico analyses using TGS-TB are consistent with those obtained using conventional molecular genotyping methods, suggesting that NGS short reads could provide multiple genotypes to discriminate multiple strains of Mtb, although longer NGS reads (≥300-mer) will be required for full genotyping on the TGS-TB web site. Most available short reads (~100-mer) can be utilized to discriminate the isolates based on the core genome phylogeny. TGS-TB provides a more accurate and discriminative strain typing for clinical and epidemiological investigations; NGS strain typing offers a total genotyping solution for Mtb outbreak and surveillance. TGS-TB web site: https://gph.niid.go.jp/tgs-tb/.
Frontiers in Microbiology | 2016
Akifumi Yamashita; Tsuyoshi Sekizuka; Makoto Kuroda
Although next-generation sequencing (NGS) technology provides a comprehensive means with which to identify potential pathogens from clinical specimens, simple and user-friendly bioinformatics pipelines are expected to obtain the entire viral genome sequence, subsequently providing traceability, based on extensive molecular phylogenetic analyses. We have developed a web-based integrated NGS analysis tool for the viral genome (virus genome-targeted assembly pipeline: VirusTAP), which includes extensive sequence subtraction of host- or bacteria-related NGS reads prior to de novo assembly, leading to the prompt and accurate assembly of viral genome sequences from metagenomic NGS reads. The VirusTAP web site is at https://gph.niid.go.jp/cgi-bin/virustap/index.cgi/.
Antimicrobial Agents and Chemotherapy | 2016
Masato Akiba; Tsuyoshi Sekizuka; Akifumi Yamashita; Makoto Kuroda; Yuki Fujii; Misato Murata; Ken-ichi Lee; Derrick Ian Joshua; Keshava Balakrishna; Indira Bairy; Kaushik Subramanian; Padma Krishnan; Natesan Munuswamy; Ravindra K. Sinha; Taketoshi Iwata; Masahiro Kusumoto; Keerthi S. Guruge
ABSTRACT To determine the distribution and relationship of antimicrobial resistance determinants among extended-spectrum-cephalosporin (ESC)-resistant or carbapenem-resistant Escherichia coli isolates from the aquatic environment in India, water samples were collected from rivers or sewage treatment plants in five Indian states. A total of 446 E. coli isolates were randomly obtained. Resistance to ESC and/or carbapenem was observed in 169 (37.9%) E. coli isolates, which were further analyzed. These isolates showed resistance to numerous antimicrobials; more than half of the isolates exhibited resistance to eight or more antimicrobials. The blaNDM gene was detected in 14/21 carbapenem-resistant E. coli isolates: blaNDM-1 in 2 isolates, blaNDM-5 in 7 isolates, and blaNDM-7 in 5 isolates. The blaCTX-M gene was detected in 112 isolates (66.3%): blaCTX-M-15 in 108 isolates and blaCTX-M-55 in 4 isolates. We extracted 49 plasmids from selected isolates, and their whole-genome sequences were determined. Fifty resistance genes were detected, and 11 different combinations of replicon types were observed among the 49 plasmids. The network analysis results suggested that the plasmids sharing replicon types tended to form a community, which is based on the predicted gene similarity among the plasmids. Four communities each containing from 4 to 17 plasmids were observed. Three of the four communities contained plasmids detected in different Indian states, suggesting that the interstate dissemination of ancestor plasmids has already occurred. Comparison of the DNA sequences of the blaNDM-positive plasmids detected in this study with known sequences of related plasmids suggested that various mutation events facilitated the evolution of the plasmids and that plasmids with similar genetic backgrounds have widely disseminated in India.
Antimicrobial Agents and Chemotherapy | 2017
Michiko Kawanishi; Hitoshi Abo; Manao Ozawa; Mariko Uchiyama; Takahiro Shirakawa; Satowa Suzuki; Ayaka Shima; Akifumi Yamashita; Tsuyoshi Sekizuka; Kengo Kato; Makoto Kuroda; Ryoji Koike; Mayumi Kijima
ABSTRACT We screened mcr-1 and mcr-2 genes in 9,306 Escherichia coli strains isolated from healthy animals in the Japanese Veterinary Antimicrobial Resistance Monitoring (JVARM) system. mcr-1 was detected in 39 strains (5, 20, and 14 strains isolated from cattle, swine, and broilers, respectively), whereas mcr-2 was not detected. mcr-2 was also not detected with the investigation sequence homology search against our curated GenEpid-J database.
Frontiers in Microbiology | 2015
Akiko Kinumaki; Tsuyoshi Sekizuka; Hiromichi Hamada; Kengo Kato; Akifumi Yamashita; Makoto Kuroda
Kawasaki disease (KD) is an acute febrile illness of early childhood. Previous reports have suggested that genetic disease susceptibility factors, together with a triggering infectious agent, could be involved in KD pathogenesis; however, the precise etiology of this disease remains unknown. Additionally, previous culture-based studies have suggested a possible role of intestinal microbiota in KD pathogenesis. In this study, we performed metagenomic analysis to comprehensively assess the longitudinal variation in the intestinal microbiota of 28 KD patients. Several notable bacterial genera were commonly extracted during the acute phase, whereas a relative increase in the number of Ruminococcus bacteria was observed during the non-acute phase of KD. The metagenomic analysis results based on bacterial species classification suggested that the number of sequencing reads with similarity to five Streptococcus spp. (S. pneumonia, pseudopneumoniae, oralis, gordonii, and sanguinis), in addition to patient-derived Streptococcus isolates, markedly increased during the acute phase in most patients. Streptococci include a variety of pathogenic bacteria and probiotic bacteria that promote human health; therefore, this further species discrimination could comprehensively illuminate the KD-associated microbiota. The findings of this study suggest that KD-related Streptococci might be involved in the pathogenesis of this disease.
Pathogenetics | 2014
Akifumi Yamashita; Tsuyoshi Sekizuka; Makoto Kuroda
The global clustering of gene families through network analysis has been demonstrated in whole genome, plasmid, and microbiome analyses. In this study, we carried out a plasmidome network analysis of all available complete bacterial plasmids to determine plasmid associations. A blastp clustering search at 100% aa identity cut-off and sharing at least one gene between plasmids, followed by a multilevel community network analysis revealed that a surprisingly large number of the plasmids were connected by one largest connected component (LCC), with dozens of community sub-groupings. The LCC consisted mainly of Bacilli and Gammaproteobacteria plasmids. Intriguingly, horizontal gene transfer (HGT) was noted between different phyla (i.e., Staphylococcus and Pasteurellaceae), suggesting that Pasteurellaceae can acquire antimicrobial resistance (AMR) genes from closely contacting Staphylococcus spp., which produce the external supplement of V-factor (NAD). Such community network analysis facilitate displaying possible recent HGTs like a class 1 integron, str and tet resistance markers between communities. Furthermore, the distribution of the Inc replicon type and AMR genes, such as the extended-spectrum ß-lactamase (ESBL) CTX-M or the carbapenemases KPC NDM-1, implies that such genes generally circulate within limited communities belonging to typical bacterial genera. Thus, plasmidome network analysis provides a remarkable discriminatory power for plasmid-related HGT and evolution.
Scientific Reports | 2017
Tsuyoshi Sekizuka; Michiko Kawanishi; Mamoru Ohnishi; Ayaka Shima; Kengo Kato; Akifumi Yamashita; Mari Matsui; Satowa Suzuki; Makoto Kuroda
A multiple DNA inversion system, the shufflon, exists in incompatibility (Inc) I1 and I2 plasmids. The shufflon generates variants of the PilV protein, a minor component of the thin pilus. The shufflon is one of the most difficult regions for de novo genome assembly because of its structural diversity even in an isolated bacterial clone. We determined complete genome sequences, including those of IncI2 plasmids carrying mcr-1, of three Escherichia coli strains using single-molecule, real-time (SMRT) sequencing and Illumina sequencing. The sequences assembled using only SMRT sequencing contained misassembled regions in the shufflon. A hybrid analysis using SMRT and Illumina sequencing resolved the misassembled region and revealed that the three IncI2 plasmids, excluding the shufflon region, were highly conserved. Moreover, the abundance ratio of whole-shufflon structures could be determined by quantitative structural variation analysis of the SMRT data, suggesting that a remarkable heterogeneity of whole-shufflon structural variations exists in IncI2 plasmids. These findings indicate that remarkable rearrangement regions should be validated using both long-read and short-read sequencing data and that the structural variation of PilV in the shufflon might be closely related to phenotypic heterogeneity of plasmid-mediated transconjugation involved in horizontal gene transfer even in bacterial clonal populations.
Frontiers in Microbiology | 2017
Takumi Motoya; Koo Nagasawa; Yuki Matsushima; Noriko Nagata; Akihide Ryo; Tsuyoshi Sekizuka; Akifumi Yamashita; Makoto Kuroda; Yukio Morita; Yoshiyuki Suzuki; Nobuya Sasaki; Kazuhiko Katayama; Hirokazu Kimura
Human norovirus (HuNoV) is a leading cause of viral gastroenteritis worldwide, of which GII.4 is the most predominant genotype. Unlike other genotypes, GII.4 has created various variants that escaped from previously acquired immunity of the host and caused repeated epidemics. However, the molecular evolutionary differences among all GII.4 variants, including recently discovered strains, have not been elucidated. Thus, we conducted a series of bioinformatic analyses using numerous, globally collected, full-length GII.4 major capsid (VP1) gene sequences (466 strains) to compare the evolutionary patterns among GII.4 variants. The time-scaled phylogenetic tree constructed using the Bayesian Markov chain Monte Carlo (MCMC) method showed that the common ancestor of the GII.4 VP1 gene diverged from GII.20 in 1840. The GII.4 genotype emerged in 1932, and then formed seven clusters including 14 known variants after 1980. The evolutionary rate of GII.4 strains was estimated to be 7.68 × 10−3 substitutions/site/year. The evolutionary rates probably differed among variants as well as domains [protruding 1 (P1), shell, and P2 domains]. The Osaka 2007 variant strains probably contained more nucleotide substitutions than any other variant. Few conformational epitopes were located in the shell and P1 domains, although most were contained in the P2 domain, which, as previously established, is associated with attachment to host factors and antigenicity. We found that positive selection sites for the whole GII.4 genotype existed in the shell and P1 domains, while Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants were under positive selection in the P2 domain. Amino acid substitutions overlapped with putative epitopes or were located around the epitopes in the P2 domain. The effective population sizes of the present strains increased stepwise for Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants. These results suggest that HuNoV GII.4 rapidly evolved in a few decades, created various variants, and altered its evolutionary rate and antigenicity.
Frontiers in Microbiology | 2016
Akifumi Yamashita; Tetsuya Sakamoto; Tsuyoshi Sekizuka; Kengo Kato; Tomohiko Takasaki; Makoto Kuroda
Dengue viruses (DENVs) and their vectors are widely distributed throughout the tropical and subtropical regions of the world. An autochthonous case of DENV was reported in Tokyo, Japan, in 2014, for the first time in 70 years. A comprehensive database of DENV sequences containing both serotype and genotype data and epidemiological data is crucial to trace DENV outbreak isolates and promptly respond to outbreaks. We constructed a DENV database containing the serotype, genotype, year and country/region of collection by collecting all publically available DENV sequence information from the National Center for Biotechnology Information (NCBI) and assigning genotype information. We also implemented the web service Dengue Genographic Viewer (DGV), which shows the geographical distribution of each DENV genotype in a user-specified time span. DGV also assigns the serotype and genotype to a user-specified sequence by performing a homology search against the curated DENV database, and shows its homologous sequences with the geographical position and year of collection. DGV also shows the distribution of DENV-infected entrants to Japan by plotting epidemiological data from the Infectious Agents Surveillance Report (IASR), Japan. This overview of the DENV genotype distribution may aid in planning for the control of DENV infections. DGV is freely available online at: (https://gph.niid.go.jp/geograph/dengue/content/genomemap).
Infection and Immunity | 2017
Noriko Hasegawa; Tsuyoshi Sekizuka; Yutaka Sugi; Nobuhiro Kawakami; Yumiko Ogasawara; Kengo Kato; Akifumi Yamashita; Fumihiko Takeuchi; Makoto Kuroda
ABSTRACT Streptococcus intermedius is known to cause periodontitis and pyogenic infections in the brain and liver. Here we report the complete genome sequence of strain TYG1620 (genome size, 2,006,877 bp; GC content, 37.6%; 2,020 predicted open reading frames [ORFs]) isolated from a brain abscess in an infant. Comparative analysis of S. intermedius genome sequences suggested that TYG1620 carries a notable type VII secretion system (T7SS), two long repeat regions, and 19 ORFs for cell wall-anchored proteins (CWAPs). To elucidate the genes responsible for the pathogenicity of TYG1620, transcriptome analysis was performed in a murine subcutaneous abscess model. The results suggest that the levels of expression of small hypothetical proteins similar to phenol-soluble modulin β1 (PSMβ1), a staphylococcal virulence factor, significantly increased in the abscess model. In addition, an experiment in a murine subcutaneous abscess model with random transposon (Tn) mutant attenuation suggested that Tn mutants with mutations in 212 ORFs in the Tn mutant library were attenuated in the murine abscess model (629 ORFs were disrupted in total); the 212 ORFs are putatively essential for abscess formation. Transcriptome analysis identified 37 ORFs, including paralogs of the T7SS and a putative glucan-binding CWAP in long repeat regions, to be upregulated and attenuated in vivo. This study provides a comprehensive characterization of S. intermedius pathogenicity based on the complete genome sequence and a murine subcutaneous abscess model with transcriptome and Tn mutagenesis, leading to the identification of pivotal targets for vaccines or antimicrobial agents for the control of S. intermedius infections.