Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsuyoshi Sekizuka is active.

Publication


Featured researches published by Tsuyoshi Sekizuka.


Clinical Infectious Diseases | 2012

Identification of Kudoa septempunctata as the Causative Agent of Novel Food Poisoning Outbreaks in Japan by Consumption of Paralichthys olivaceus in Raw Fish

Takao Kawai; Tsuyoshi Sekizuka; Yuichiro Yahata; Makoto Kuroda; Yuko Kumeda; Yoshio Iijima; Yoichi Kamata; Yoshiko Sugita-Konishi; Takahiro Ohnishi

BACKGROUND Outbreaks of an unidentified food-borne illness associated with the consumption of raw fish have increased in Japan since 2003. Those affected with this illness develop diarrhea and emesis within 2-20 hours after a meal including raw fish. No known causative agents such as bacteria, viruses, bacterial toxins, or toxic chemicals have been detected in the foods that were ingested. Fortunately, this illness is self-limiting with good prognosis in all cases. METHODS We conducted an epidemiological analysis of outbreaks that occurred during 2008 and 2010 and analysed a fish sample from one outbreak by metagenomic DNA sequencing, real-time polymerase chain reaction, and direct microscopic observations. The pathogenicity of a putative risk factor identified by these techniques was assessed using the suckling-mouse test and a house musk shrew emetic assay. RESULTS The epidemiological analysis of outbreaks in 24 municipalities involving >1300 subjects implicated an olive flounder (Paralichthys olivaceus) as the causative food source. The presence of Kudoa septempunctata, a recently-described myxosporean species in P. olivaceus, was prevalent in the causative foods. K. septempunctata induced watery stools and an elevated fluid accumulation ratio in suckling mice, as well as vomiting in house musk shrews. CONCLUSIONS These results identify K. septempunctata as the etiological agent of this novel food-borne illness outbreak associated with consumption of raw P. olivaceus. This is the first report, to our knowledge, demonstrating the human pathogenicity of Kudoa spores.


PLOS ONE | 2010

Characterization of Quasispecies of Pandemic 2009 Influenza A Virus (A/H1N1/2009) by De Novo Sequencing Using a Next-Generation DNA Sequencer

Makoto Kuroda; Harutaka Katano; Noriko Nakajima; Minoru Tobiume; Akira Ainai; Tsuyoshi Sekizuka; Hideki Hasegawa; Masato Tashiro; Yuko Sasaki; Yoshichika Arakawa; Satoru Hata; Masahide Watanabe; Tetsutaro Sata

Pandemic 2009 influenza A virus (A/H1N1/2009) has emerged globally. In this study, we performed a comprehensive detection of potential pathogens by de novo sequencing using a next-generation DNA sequencer on total RNAs extracted from an autopsy lung of a patient who died of viral pneumonia with A/H1N1/2009. Among a total of 9.4×106 40-mer short reads, more than 98% appeared to be human, while 0.85% were identified as A/H1N1/2009 (A/Nagano/RC1-L/2009(H1N1)). Suspected bacterial reads such as Streptococcus pneumoniae and other oral bacteria flora were very low at 0.005%, and a significant bacterial infection was not histologically observed. De novo assembly and read mapping analysis of A/Nagano/RC1-L/2009(H1N1) showed more than ×200 coverage on average, and revealed nucleotide heterogeneity on hemagglutinin as quasispecies, specifically at two amino acids (Gly172Glu and Gly239Asn of HA) located on the Sa and Ca2 antigenic sites, respectively. Gly239 and Asn239 on antigenic site Ca2 appeared to be minor amino acids compared with the highly distributed Asp239 in H1N1 HAs. This study demonstrated that de novo sequencing can comprehensively detect pathogens, and such in-depth investigation facilitates the identification of influenza A viral heterogeneity. To better characterize the A/H1N1/2009 virus, unbiased comprehensive techniques will be indispensable for the primary investigations of emerging infectious diseases.


PLOS ONE | 2011

Complete Sequencing of the blaNDM-1-Positive IncA/C Plasmid from Escherichia coli ST38 Isolate Suggests a Possible Origin from Plant Pathogens

Tsuyoshi Sekizuka; Mari Matsui; Kunikazu Yamane; Fumihiko Takeuchi; Makoto Ohnishi; Akira Hishinuma; Yoshichika Arakawa; Makoto Kuroda

The complete sequence of the plasmid pNDM-1_Dok01 carrying New Delhi metallo-β-lactamase (NDM-1) was determined by whole genome shotgun sequencing using Escherichia coli strain NDM-1_Dok01 (multilocus sequence typing type: ST38) and the transconjugant E. coli DH10B. The plasmid is an IncA/C incompatibility type composed of 225 predicted coding sequences in 195.5 kb and partially shares a sequence with bla CMY-2-positive IncA/C plasmids such as E. coli AR060302 pAR060302 (166.5 kb) and Salmonella enterica serovar Newport pSN254 (176.4 kb). The bla NDM-1 gene in pNDM-1_Dok01 is terminally flanked by two IS903 elements that are distinct from those of the other characterized NDM-1 plasmids, suggesting that the bla NDM-1 gene has been broadly transposed, together with various mobile elements, as a cassette gene. The chaperonin groES and groEL genes were identified in the bla NDM-1-related composite transposon, and phylogenetic analysis and guanine-cytosine content (GC) percentage showed similarities to the homologs of plant pathogens such as Pseudoxanthomonas and Xanthomonas spp., implying that plant pathogens are the potential source of the bla NDM-1 gene. The complete sequence of pNDM-1_Dok01 suggests that the bla NDM-1 gene was acquired by a novel composite transposon on an extensively disseminated IncA/C plasmid and transferred to the E. coli ST38 isolate.


Journal of Clinical Microbiology | 2010

Genome-Wide Single Nucleotide Polymorphism Typing Method for Identification of Bacillus anthracis Species and Strains among B. cereus Group Species

Makoto Kuroda; Masakuni Serizawa; Akiko Okutani; Tsuyoshi Sekizuka; Satomi Banno; Satoshi Inoue

ABSTRACT As an issue of biosecurity, species-specific genetic markers have been well characterized. However, Bacillus anthracis strain-specific information is currently not sufficient for traceability to identify the origin of the strain. By using genome-wide screening using short read mapping, we identified strain-specific single nucleotide polymorphisms (SNPs) among B. anthracis strains including Japanese isolates, and we further developed a simplified 80-tag SNP typing method for the primary investigation of traceability. These 80-tag SNPs were selected from 2,965 SNPs on the chromosome and the pXO1 and pXO2 plasmids from a total of 19 B. anthracis strains, including the available genome sequences of 17 strains in the GenBank database and 2 Japanese isolates that were sequenced in this study. Phylogenetic analysis based on 80-tag SNP typing showed a higher resolution power to discriminate 12 Japanese isolates rather than the 25 loci identified by multiple-locus variable-number tandem-repeat analysis (MLVA). In addition, the 80-tag PCR testing enabled the discrimination of B. anthracis from other B. cereus group species, helping to identify whether a suspected sample originates from the intentional release of a bioterrorism agent or environmental contamination with a virulent agent. In conclusion, 80-tag SNP typing can be a rapid and sufficient test for the primary investigation of strain origin. Subsequent whole-genome sequencing will reveal apparent strain-specific genetic markers for traceability of strains following an anthrax outbreak.


Journal of Virology | 2014

The Host Protease TMPRSS2 Plays a Major Role in In Vivo Replication of Emerging H7N9 and Seasonal Influenza Viruses

Kouji Sakai; Yasushi Ami; Maino Tahara; Toru Kubota; Masaki Anraku; Masako Abe; Noriko Nakajima; Tsuyoshi Sekizuka; Kazuya Shirato; Yuriko Suzaki; Akira Ainai; Yuichiro Nakatsu; Kazuhiko Kanou; Kazuya Nakamura; Tadaki Suzuki; Katsuhiro Komase; Eri Nobusawa; Katsumi Maenaka; Makoto Kuroda; Hideki Hasegawa; Yoshihiro Kawaoka; Masato Tashiro; Makoto Takeda

ABSTRACT Proteolytic cleavage of the hemagglutinin (HA) protein is essential for influenza A virus (IAV) to acquire infectivity. This process is mediated by a host cell protease(s) in vivo. The type II transmembrane serine protease TMPRSS2 is expressed in the respiratory tract and is capable of activating a variety of respiratory viruses, including low-pathogenic (LP) IAVs possessing a single arginine residue at the cleavage site. Here we show that TMPRSS2 plays an essential role in the proteolytic activation of LP IAVs, including a recently emerged H7N9 subtype, in vivo. We generated TMPRSS2 knockout (KO) mice. The TMPRSS2 KO mice showed normal reproduction, development, and growth phenotypes. In TMPRSS2 KO mice infected with LP IAVs, cleavage of HA was severely impaired, and consequently, the majority of LP IAV progeny particles failed to gain infectivity, while the viruses were fully activated proteolytically in TMPRSS2+/+ wild-type (WT) mice. Accordingly, in contrast to WT mice, TMPRSS2 KO mice were highly tolerant of challenge infection by LP IAVs (H1N1, H3N2, and H7N9) with ≥1,000 50% lethal doses (LD50) for WT mice. On the other hand, a high-pathogenic H5N1 subtype IAV possessing a multibasic cleavage site was successfully activated in the lungs of TMPRSS2 KO mice and killed these mice, as observed for WT mice. Our results demonstrate that recently emerged H7N9 as well as seasonal IAVs mainly use the specific protease TMPRSS2 for HA cleavage in vivo and, thus, that TMPRSS2 expression is essential for IAV replication in vivo. IMPORTANCE Influenza A virus (IAV) is a leading pathogen that infects and kills many humans every year. We clarified that the infectivity and pathogenicity of IAVs, including a recently emerged H7N9 subtype, are determined primarily by a host protease, TMPRSS2. Our data showed that TMPRSS2 is the key host protease that activates IAVs in vivo through proteolytic cleavage of their HA proteins. Hence, TMPRSS2 is a good target for the development of anti-IAV drugs. Such drugs could also be effective for many other respiratory viruses, including the recently emerged Middle East respiratory syndrome (MERS) coronavirus, because they are also activated by TMPRSS2 in vitro. Consequently, the present paper could have a large impact on the battle against respiratory virus infections and contribute greatly to human health.


DNA Research | 2014

The Genome Landscape of the African Green Monkey Kidney-Derived Vero Cell Line

Naoki Osada; Arihiro Kohara; Toshiyuki Yamaji; Noriko Hirayama; Fumio Kasai; Tsuyoshi Sekizuka; Makoto Kuroda; Kentaro Hanada

Continuous cell lines that originate from mammalian tissues serve as not only invaluable tools for life sciences, but also important animal cell substrates for the production of various types of biological pharmaceuticals. Vero cells are susceptible to various types of microbes and toxins and have widely contributed to not only microbiology, but also the production of vaccines for human use. We here showed the genome landscape of a Vero cell line, in which 25,877 putative protein-coding genes were identified in the 2.97-Gb genome sequence. A homozygous ∼9-Mb deletion on chromosome 12 caused the loss of the type I interferon gene cluster and cyclin-dependent kinase inhibitor genes in Vero cells. In addition, an ∼59-Mb loss of heterozygosity around this deleted region suggested that the homozygosity of the deletion was established by a large-scale conversion. Moreover, a genomic analysis of Vero cells revealed a female Chlorocebus sabaeus origin and proviral variations of the endogenous simian type D retrovirus. These results revealed the genomic basis for the non-tumourigenic permanent Vero cell lineage susceptible to various pathogens and will be useful for generating new sub-lines and developing new tools in the quality control of Vero cells.


Emerging Infectious Diseases | 2012

Epidemic myalgia in adults associated with human parechovirus type 3 infection, Yamagata, Japan, 2008.

Katsumi Mizuta; Makoto Kuroda; Masayuki Kurimura; Yoshikazu Yahata; Tsuyoshi Sekizuka; Yoko Aoki; Tatsuya Ikeda; Chieko Abiko; Masahiro Noda; Hirokazu Kimura; Tetsuya Mizutani; Takeo Kato; Toru Kawanami; Tadayuki Ahiko

This virus typically causes illness in young children but was found to be associated with illness in adults.


Antimicrobial Agents and Chemotherapy | 2011

Whole-Genome Analysis of Salmonella enterica Serovar Typhimurium T000240 Reveals the Acquisition of a Genomic Island Involved in Multidrug Resistance via IS1 Derivatives on the Chromosome

Hidemasa Izumiya; Tsuyoshi Sekizuka; Hideo Nakaya; Masumi Taguchi; Akio Oguchi; Natsuko Ichikawa; Rika Nishiko; Shuji Yamazaki; Nobuyuki Fujita; Haruo Watanabe; Makoto Ohnishi; Makoto Kuroda

ABSTRACT Salmonella enterica serovar Typhimurium is frequently associated with life-threatening systemic infections, and the recent global emergence of multidrug resistance in S. enterica isolates from agricultural and clinical settings has raised concerns. In this study, we determined the whole-genome sequence of fluoroquinolone-resistant S. enterica serovar Typhimurium T000240 strain (DT12) isolated from human gastroenteritis in 2000. Comparative genome analysis revealed that T000240 displays high sequence similarity to strain LT2, which was originally isolated in 1940, indicating that progeny of LT2 might be reemerging. T000240 possesses a unique 82-kb genomic island, designated as GI-DT12, which is composed of multidrug resistance determinants, including a Tn2670-like composite transposon (class 1 integron [intI1, blaoxa-30 , aadA1, qacEΔ1, and sul1], mercury resistance proteins, and chloramphenicol acetyltransferase), a Tn10-like tetracycline resistance protein (tetA), the aerobactin iron-acquisition siderophore system (lutA and lucABC), and an iron transporter (sitABCD). Since GI-DT12 is flanked by IS1 derivatives, IS1-mediated recombination likely played a role in the acquisition of this genomic island through horizontal gene transfer. The aminoglycoside-(3)-N-acetyltransferase (aac(3)) gene and a class 1 integron harboring the dfrA1 gene cassette responsible for gentamicin and trimethoprim resistance, respectively, were identified on plasmid pSTMDT12_L and appeared to have been acquired through homologous recombination with IS26. This study represents the first characterization of the unique genomic island GI-DT12 that appears to be associated with possible IS1-mediated recombination in S. enterica serovar Typhimurium. It is expected that future whole-genome studies will aid in the characterization of the horizontal gene transfer events for the emerging S. enterica serovar Typhimurium strains.


Applied and Environmental Microbiology | 2011

Inhibition of Streptococcus mutans Biofilm Formation by Streptococcus salivarius FruA

Ayako Ogawa; Soichi Furukawa; Shuhei Fujita; Jiro Mitobe; Taketo Kawarai; Naoki Narisawa; Tsuyoshi Sekizuka; Makoto Kuroda; Kuniyasu Ochiai; Hirokazu Ogihara; Saori Kosono; Saori Yoneda; Haruo Watanabe; Yasushi Morinaga; Hiroshi Uematsu; Hidenobu Senpuku

The oral microbial flora consists of many beneficial species of bacteria that are associated with the healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multi-species biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting S. mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion-exchange and gel filtration chromatography. MALDI-TOF mass spectrometry analysis was performed and the results were compared to data bases. The S. salivarius HT9R genome sequence was determined; and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-D-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose; and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. The inhibition was induced by decreasing polysaccharide production dependent on sucrose digestion rather than fructan digestion. The data indicate S. salivarius produces large quantities of FruA; and FruA alone may play an important role in multi-species microbial interactions for sucrose-dependent biofilm formation in the oral cavity.ABSTRACT The oral microbial flora consists of many beneficial species of bacteria that are associated with a healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multispecies biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting Streptococcus mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion exchange and gel filtration chromatography. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis was performed, and the results were compared to databases. The S. salivarius HT9R genome sequence was determined and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-d-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. Inhibition was induced by decreasing polysaccharide production, which is dependent on sucrose digestion rather than fructan digestion. The data indicate that S. salivarius produces large quantities of FruA and that FruA alone may play an important role in multispecies microbial interactions for sucrose-dependent biofilm formation in the oral cavity.


BMC Microbiology | 2012

Corynebacterium ulcerans 0102 carries the gene encoding diphtheria toxin on a prophage different from the C. diphtheriae NCTC 13129 prophage

Tsuyoshi Sekizuka; Akihiko Yamamoto; Takako Komiya; Tsuyoshi Kenri; Fumihiko Takeuchi; Motohide Takahashi; Makoto Kuroda; Masaaki Iwaki

BackgroundCorynebacterium ulcerans can cause a diphtheria-like illness, especially when the bacterium is lysogenized with a tox gene-carrying bacteriophage that produces diphtheria toxin. Acquisition of toxigenicity upon phage lysogenization is a common feature of C. ulcerans and C. diphtheriae. However, because of a lack of C. ulcerans genome information, a detailed comparison of prophages has not been possible between these two clinically important and closely related bacterial species.ResultsWe determined the whole genome sequence of the toxigenic C. ulcerans 0102 isolated in Japan. The genomic sequence showed a striking similarity with that of Corynebacterium pseudotuberculosis and, to a lesser extent, with that of C. diphtheriae. The 0102 genome contained three distinct prophages. One of these, ΦCULC0102-I, was a tox-positive prophage containing genes in the same structural order as for tox-positive C. diphtheriae prophages. However, the primary structures of the individual genes involved in the phage machinery showed little homology between the two counterparts.ConclusionTaken together, these results suggest that the tox-positive prophage in this strain of C. ulcerans has a distinct origin from that of C. diphtheriae NCTC 13129.

Collaboration


Dive into the Tsuyoshi Sekizuka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akifumi Yamashita

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fumihiko Takeuchi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hideki Hasegawa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kengo Kato

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirokazu Kimura

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Akihide Ryo

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Hitomi Fukumoto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mari Matsui

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge