Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akihito Fukudome is active.

Publication


Featured researches published by Akihito Fukudome.


RNA | 2011

Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of Arabidopsis Dicer-like 4

Akihito Fukudome; Akihiro Kanaya; Mai Egami; Yukihiro Nakazawa; Akihiro Hiraguri; Hiromitsu Moriyama; Toshiyuki Fukuhara

Arabidopsis thaliana Dicer-like 4 (DCL4) produces 21-nt small interfering RNAs from both endogenous and exogenous double-stranded RNAs (dsRNAs), and it interacts with DRB4, a dsRNA-binding protein, in vivo and in vitro. However, the role of DRB4 in DCL4 activity remains unclear because the dsRNA-cleaving activity of DCL4 has not been characterized biochemically. In this study, we biochemically characterize DCL4s Dicer activity and establish that DRB4 is required for this activity in vitro. Crude extracts from Arabidopsis seedlings cleave long dsRNAs into 21-nt small RNAs in a DCL4/DRB4-dependent manner. Immunoaffinity-purified DCL4 complexes produce 21-nt small RNAs from long dsRNA, and these complexes have biochemical properties similar to those of known Dicer family proteins. The DCL4 complexes purified from drb4-1 do not cleave dsRNA, and the addition of recombinant DRB4 to drb4-1 complexes specifically recovers the 21-nt small RNA generation. These results reveal that DCL4 requires DRB4 to cleave long dsRNA into 21-nt small RNAs in vitro. Amino acid substitutions in conserved dsRNA-binding domains (dsRBDs) of DRB4 impair three activities: binding to dsRNA, interacting with DCL4, and facilitating DCL4 activity. These observations indicate that the dsRBDs are critical for DRB4 function. Our biochemical approach and observations clearly show that DRB4 is specifically required for DCL4 activity in vitro.


Nucleic Acids Research | 2014

Distinct substrate specificities of Arabidopsis DCL3 and DCL4

Hideaki Nagano; Akihito Fukudome; Akihiro Hiraguri; Hiromitsu Moriyama; Toshiyuki Fukuhara

In Arabidopsis thaliana, Dicer-like 3 (DCL3) and Dicer-like 4 (DCL4) cleave long, perfect double-stranded RNAs (dsRNAs) into 24 and 21 nucleotides (nt) small interfering RNAs, respectively, which in turn function in RNA-directed DNA methylation and RNA interference, respectively. To reveal how DCL3 and DCL4 individually recognize long perfect dsRNAs as substrates, we biochemically characterized DCL3 and DCL4 and compared their enzymatic properties. DCL3 preferentially cleaves short dsRNAs with 5′ phosphorylated adenosine or uridine and a 1 nt 3′ overhang, whereas DCL4 cleaves long dsRNAs with blunt ends or with a 1 or 2 nt 3′ overhang with similar efficiency. DCL3 produces 24 nt RNA duplexes with 2 nt 3′ overhangs by the 5′ counting rule. Inorganic phosphate, NaCl and KCl enhance DCL3 activity but inhibit DCL4 activity. These results indicate that plants use DCLs with distinct catalytic profiles to ensure each dsRNA substrate generates only a specific length of siRNAs that trigger a unique siRNA-mediated response.


PLOS ONE | 2013

Regulation of Abiotic Stress Signalling by Arabidopsis C-Terminal Domain Phosphatase-Like 1 Requires Interaction with a K-Homology Domain-Containing Protein

In Sil Jeong; Akihito Fukudome; Emre Aksoy; Woo Young Bang; Sewon Kim; Qingmei Guan; Jeong Dong Bahk; Kimberly May; William K. Russell; Jianhua Zhu; Hisashi Koiwa

Arabidopsis thaliana CARBOXYL-TERMINAL DOMAIN (CTD) PHOSPHATASE-LIKE 1 (CPL1) regulates plant transcriptional responses to diverse stress signals. Unlike typical CTD phosphatases, CPL1 contains two double-stranded (ds) RNA binding motifs (dsRBMs) at its C-terminus. Some dsRBMs can bind to dsRNA and/or other proteins, but the function of the CPL1 dsRBMs has remained obscure. Here, we report identification of REGULATOR OF CBF GENE EXPRESSION 3 (RCF3) as a CPL1-interacting protein. RCF3 co-purified with tandem-affinity-tagged CPL1 from cultured Arabidopsis cells and contains multiple K-homology (KH) domains, which were predicted to be important for binding to single-stranded DNA/RNA. Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation analyses established that CPL1 and RCF3 strongly associate in vivo, an interaction mediated by the dsRBM1 of CPL1 and the KH3/KH4 domains of RCF3. Mapping of functional regions of CPL1 indicated that CPL1 in vivo function requires the dsRBM1, catalytic activity, and nuclear targeting of CPL1. Gene expression profiles of rcf3 and cpl1 mutants were similar during iron deficiency, but were distinct during the cold response. These results suggest that tethering CPL1 to RCF3 via dsRBM1 is part of the mechanism that confers specificity to CPL1-mediated transcriptional regulation.


Plant Journal | 2014

Arabidopsis CPL4 is an essential C‐terminal domain phosphatase that suppresses xenobiotic stress responses

Akihito Fukudome; Emre Aksoy; Xiaoqiang Wu; Krishna Kumar; In Sil Jeong; Kimberly May; William K. Russell; Hisashi Koiwa

Eukaryotic gene expression is both promoted and inhibited by the reversible phosphorylation of the C-terminal domain of RNA polymerase II (pol II CTD). More than 20 Arabidopsis genes encode CTD phosphatase homologs, including four CTD phosphatase-like (CPL) family members. Although in vitro CTD phosphatase activity has been established for some CPLs, none have been shown to be involved in the phosphoregulation of pol II in vivo. Here we report that CPL4 is a CTD phosphatase essential for the viability of Arabidopsis thaliana. Mass spectrometry analysis identified the pol II subunits RPB1, RPB2 and RPB3 in the affinity-purified CPL4 complex. CPL4 dephosphorylates both Ser2- and Ser5-PO(4) of the CTD in vitro, with a preference for Ser2-PO(4). Arabidopsis plants overexpressing CPL4 accumulated hypophosphorylated pol II, whereas RNA interference-mediated silencing of CPL4 promoted hyperphosphorylation of pol II. A D128A mutation in the conserved DXDXT motif of the CPL4 catalytic domain resulted in a dominant negative form of CPL4, the overexpression of which inhibited transgene expression in transient assays. Inhibition was abolished by truncation of the phosphoprotein-binding Breast Cancer 1 C-terminal domain of CPL4, suggesting that both catalytic function and protein-protein interaction are essential for CPL4-mediated regulation of gene expression. We were unable to recover a homozygous cpl4 mutant, probably due to the zygotic lethality of this mutation. The reduction in CPL4 levels in CPL4(RNAi) plants increased transcript levels of a suite of herbicide/xenobiotic-responsive genes and improved herbicide tolerance, thus suggesting an additional role for CPL4 as a negative regulator of the xenobiotic detoxification pathway.


Journal of Plant Research | 2017

Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis

Akihito Fukudome; Toshiyuki Fukuhara

Dicer, a double-stranded RNA (dsRNA)-specific endoribonuclease, plays an essential role in triggering both transcriptional and post-transcriptional gene silencing in eukaryotes by cleaving dsRNAs or single-stranded RNAs bearing stem-loop structures such as microRNA precursor transcripts into 21- to 24-nt small RNAs. Unlike animals, plants have evolved to utilize at least four Dicer-like (DCL) proteins. Extensive genetic studies have revealed that each DCL protein participates in a specific gene silencing pathway, with some redundancy. However, a mechanistic understanding of how the specific action of each DCL protein is regulated in its respective pathway is still in its infancy due to the limited number of biochemical studies on plant DCL proteins. In this review, we summarize and discuss the biochemical properties of plant DCL proteins revealed by studies using highly purified recombinant proteins, crude extracts, and immunoprecipitates. With help from co-factor proteins and an ATPase/DExH-box RNA-helicase domain, the microRNA-producing enzyme DCL1 recognizes bulges and terminal loop structures in its substrate transcripts to ensure accurate and efficient processing. DCL4 prefers long dsRNA substrates and requires the dsRNA-binding protein DRB4 for its activity. The short-dsRNA preference of DCL3 is well suited for short-RNA transcription and subsequent dsRNA formation by coupling between a plant-specific DNA-dependent RNA-polymerase IV and RNA-dependent RNA-polymerase 2 in the transcriptional gene silencing pathway. Inorganic phosphate also seems to play a role in differential regulation of DCL3 and DCL4 activities. Further development of biochemical approaches will be necessary for better understanding of how plant DCL proteins are fine-tuned in each small RNA biogenesis pathway under various physiological conditions.


PLOS ONE | 2013

Arabidopsis C-Terminal Domain Phosphatase-Like 1 Functions in miRNA Accumulation and DNA Methylation

In Sil Jeong; Emre Aksoy; Akihito Fukudome; Salina Akhter; Akihiro Hiraguri; Toshiyuki Fukuhara; Jeong Dong Bahk; Hisashi Koiwa

Arabidopsis CTD-PHOSPHATASE-LIKE 1 (CPL1) is a protein phosphatase that can dephosphorylate RNA polymerase II C-terminal domain (CTD). Unlike typical CTD-phosphatases, CPL1 contains a double-stranded (ds) RNA-binding motif (dsRBM) and has been implicated for gene regulation mediated by dsRNA-dependent pathways. We investigated the role of CPL1 and its dsRBMs in various gene silencing pathways. Genetic interaction analyses revealed that cpl1 was able to partially suppress transcriptional gene silencing and DNA hypermethylation phenotype of ros1 suggesting CPL1 is involved in the RNA-directed DNA methylation pathway without reducing siRNA production. By contrast, cpl1 reduced some miRNA levels at the level of processing. Indeed, CPL1 protein interacted with proteins important for miRNA biogenesis, suggesting that CPL1 regulates miRNA processing. These results suggest that CPL1 regulates DNA methylation via a miRNA-dependent pathway.


Plant and Cell Physiology | 2017

Post-translational regulation of the dicing activities of Arabidopsis DICER-LIKE 3 and 4 by inorganic phosphate and the redox state

Atsushi Seta; Midori Tabara; Yuki Nishibori; Akihiro Hiraguri; Naoko Ohkama-Ohtsu; Tadashi Yokoyama; Satoshi Hara; Keisuke Yoshida; Toru Hisabori; Akihito Fukudome; Hisashi Koiwa; Hiromitsu Moriyama; Nobuhiro Takahashi; Toshiyuki Fukuhara

In Arabidopsis thaliana, small interfering RNAs (siRNAs) generated by two Dicer isoforms, DCL3 and DCL4, function in distinct epigenetic processes, i.e. RNA-directed DNA methylation and post-transcriptional gene silencing, respectively. Plants often respond to their environment by producing a distinct set of small RNAs; however, the mechanism for controlling the production of different siRNAs from the same dsRNA substrate remains unclear. We established a simple biochemical method to visualize the dsRNA-cleaving activities of DCL3 and DCL4 in cell-free extracts prepared from Arabidopsis seedlings. Here, we demonstrate that different nutrient statuses of a host plant affect the post-translational regulation of the dicing activity of DCL3 and DCL4. Phosphate deficiency inhibited DCL3, and the activity of DCL3 was directly activated by inorganic phosphate. Sulfur deficiency inhibited DCL4 but not DCL3, and the activity of DCL4 was recovered by supplementation of the cell-free extracts with reductants containing a thiol group. Immunopurified DCL4 was activated by recombinant Arabidopsis thioredoxin-h1 with dithiothreitol. Therefore, DCL4 is subject to redox regulation. These results demonstrate that post-translational regulation of DCL activities fine-tunes the balance between branches of the gene silencing pathway according to the growth environment.


The Plant Cell | 2017

Salt Stress and CTD PHOSPHATASE-LIKE4 Mediate the Switch between Production of Small Nuclear RNAs and mRNAs

Akihito Fukudome; Di Sun; Xiuren Zhang; Hisashi Koiwa

Salt stress and Pol II-CTD phosphorylation status affect switching between normal snRNA/imRNA production and biogenesis of stress-specific mRNAs derived from 3′-elongated snRNAs/ncRNAs. Phosphorylation of the RNA polymerase II (Pol II) C-terminal domain (CTD) regulates transcription of protein-coding mRNAs and noncoding RNAs. CTD function in transcription of protein-coding RNAs has been studied extensively, but its role in plant noncoding RNA transcription remains obscure. Here, using Arabidopsis thaliana CTD PHOSPHATASE-LIKE4 knockdown lines (CPL4RNAi), we showed that CPL4 functions in genome-wide, conditional production of 3′-extensions of small nuclear RNAs (snRNAs) and biogenesis of novel transcripts from protein-coding genes downstream of the snRNAs (snRNA-downstream protein-coding genes [snR-DPGs]). Production of snR-DPGs required the Pol II snRNA promoter (PIIsnR), and CPL4RNAi plants showed increased read-through of the snRNA 3′-end processing signal, leading to continuation of transcription downstream of the snRNA gene. We also discovered an unstable, intermediate-length RNA from the SMALL SCP1-LIKE PHOSPHATASE14 locus (imRNASSP14), whose expression originated from the 5′ region of a protein-coding gene. Expression of the imRNASSP14 was driven by a PIIsnR and was conditionally 3′-extended to produce an mRNA. In the wild type, salt stress induced the snRNA-to-snR-DPG switch, which was associated with alterations of Pol II-CTD phosphorylation at the target loci. The snR-DPG transcripts occur widely in plants, suggesting that the transcriptional snRNA-to-snR-DPG switch may be a ubiquitous mechanism to regulate plant gene expression in response to environmental stresses.


Journal of Plant Research | 2017

Double-stranded RNA-binding protein DRB3 negatively regulates anthocyanin biosynthesis by modulating PAP1 expression in Arabidopsis thaliana

Hikaru Sawano; Takuma Matsuzaki; Tomoyuki Usui; Midori Tabara; Akihito Fukudome; Akihiro Kanaya; Daichi Tanoue; Akihiro Hiraguri; Gorou Horiguchi; Misato Ohtani; Taku Demura; Toshinori Kozaki; Kazuo Ishii; Hiromitsu Moriyama; Toshiyuki Fukuhara

The model plant Arabidopsis thaliana has five double-stranded RNA-binding proteins (DRB1-DRB5), two of which, DRB1 and DRB4, are well characterized. In contrast, the functions of DRB2, DRB3 and DRB5 have yet to be elucidated. In this study, we tried to uncover their functions using drb mutants and DRB-over-expressed lines. In over-expressed lines of all five DRB genes, the over-expression of DRB2 or DRB3 (DRB2ox or DRB3ox) conferred a downward-curled leaf phenotype, but the expression profiles of ten small RNAs were similar to that of the wild-type (WT) plant. Phenotypes were examined in response to abiotic stresses. Both DRB2ox and DRB3ox plants exhibited salt-tolerance. When these plants were exposed to cold stress, drb2 and drb3 over-accumulated anthocyanin but DRB2ox and DRB3ox did not. Therefore, the over-expression of DRB2 or DRB3 had pleiotropic effects on host plants. Microarray and deep-sequencing analyses indicated that several genes encoding key enzymes for anthocyanin biosynthesis, including chalcone synthase (CHS), dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS), were down-regulated in DRB3ox plants. When DRB3ox was crossed with the pap1-D line, which is an activation-tagged transgenic line that over-expresses the key transcription factor PAP1 (Production of anthocyanin pigmentation1) for anthocyanin biosynthesis, over-expression of DRB3 suppressed the expression of PAP1, CHS, DFR and ANS genes. DRB3 negatively regulates anthocyanin biosynthesis by modulating the level of PAP1 transcript. Since two different small RNAs regulate PAP1 gene expression, a possible function of DRB3 for small RNA biogenesis is discussed.


Plant Journal | 2018

Silencing Arabidopsis CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4 induces cytokinin-oversensitive de novo shoot organogenesis

Akihito Fukudome; Jared S. Goldman; Scott A. Finlayson; Hisashi Koiwa

De novo shoot organogenesis (DNSO) is a post-embryonic development programme that has been widely exploited by plant biotechnology. DNSO is a hormonally regulated process in which auxin and cytokinin (CK) coordinate suites of genes encoding transcription factors, general transcription factors, and RNA metabolism machinery. Here we report that silencing Arabidopsis thaliana carboxyl-terminal domain (CTD) phosphatase-like 4 (CPL4RNAi ) resulted in increased phosphorylation levels of RNA polymerase II (pol II) CTD and altered lateral root development and DNSO efficiency of the host plants. Under standard growth conditions, CPL4RNAi lines produced no or few lateral roots. When induced by high concentrations of auxin, CPL4RNAi lines failed to produce focused auxin maxima at the meristem of lateral root primordia, and produced fasciated lateral roots. In contrast, root explants of CPL4RNAi lines were highly competent for DNSO. Efficient DNSO of CPL4RNAi lines was observed even under 10 times less the CK required for the wild-type explants. Transcriptome analysis showed that CPL4RNAi , but not wild-type explants, expressed high levels of shoot meristem-related genes even during priming on medium with a high auxin/CK ratio, and during subsequent shoot induction with a lower auxin/CK ratio. Conversely, CPL4RNAi enhanced the inhibitory phenotype of the shoot redifferentiation defective2-1 mutation, which affected snRNA biogenesis and formation of the auxin gradient. These results indicated that CPL4 functions in multiple regulatory pathways that positively and negatively affect DNSO.

Collaboration


Dive into the Akihito Fukudome's collaboration.

Top Co-Authors

Avatar

Toshiyuki Fukuhara

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihiro Hiraguri

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Hiromitsu Moriyama

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Jeong Dong Bahk

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge