Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Akiko Kume.
Oncology Reports | 2012
Chie Oshita; Masako Takikawa; Akiko Kume; Haruo Miyata; Tadashi Ashizawa; Akira Iizuka; Yoshio Kiyohara; Shusuke Yoshikawa; Ryuji Tanosaki; Naoya Yamazaki; Akifumi Yamamoto; Kazutoh Takesako; Ken Yamaguchi; Yasuto Akiyama
Metastatic and chemoresistant melanoma can be a good target of immunotherapy because it is an intractable cancer with a very poor prognosis. Previously, we tested a dendritic cell (DC)-based phase I vaccine, and confirmed that it was safe. In the present study, we performed a phase II trial of a DC vaccine for metastatic melanoma patients with mainly the HLA-A24 genotype, and investigated the efficacy of the vaccine. Twenty-four patients with metastatic melanoma were enrolled into a phase II study of DC-based immunotherapy. The group included 19 HLA-A24-positive (A*2402) patients and 3 HLA-A2-positive (A*0201) patients. The protocol for DC production was similar to that in the phase I trial. Briefly, a cocktail of 5 melanoma-associated synthetic peptides (gp100, tyrosinase, MAGE-A2, MAGE-A3 and MART-1 or MAGE-A1) restricted to HLA-A2 or A24 and KLH were used for DC pulsing. Finally, DCs were injected subcutaneously (s.c.) into the inguinal region in the dose range of 1–5×107 per shot. The DC ratio (lin-HLA-DR+) of the vaccine was 38.1±13.3% and the frequency of CD83+ DCs was 25.7±20.8%. Other parameters regarding DC processing were not different from phase I. Immune response-related parameters including the ELISPOT assay, DTH reaction to peptide or KLH, DC injection numbers were shown to be related to a good prognosis. The ELISPOT reaction was positive in 75% of the patients vaccinated. The increase of anti-melanoma antigen antibody titer before vaccination was also shown to be a prognosis factor, but that post-vaccination was not. Based on immunohistochemical analysis, CD8 and IL-17 were not involved in the prognosis. Adverse effects of more than grade III were not seen. Overall survival analysis revealed a significant survival prolongation effect in DC-given melanoma patients. These results suggest that peptide cocktail-treated DC vaccines may be a safe and effective therapy against metastatic melanoma in terms of prolongation of overall survival time.
BMC Cancer | 2012
Yasuto Akiyama; Chie Oshita; Akiko Kume; Akira Iizuka; Haruo Miyata; Masaru Komiyama; Tadashi Ashizawa; Mika Yagoto; Yoshiaki Abe; Koichi Mitsuya; Reiko Watanabe; Takashi Sugino; Ken Yamaguchi; Yoko Nakasu
BackgroundHigh-grade gliomas including glioblastoma multiforme (GBM) are among the most malignant and aggressive of tumors, and have a very poor prognosis despite a temozolomide-based intensive treatment. Therefore, a novel therapeutic approach to controlling recurrence is needed. In the present study, we investigated the effect of activated dendritic cell (DC) (α-type-1 polarized DC)-based immunotherapy on high-grade glioma patients with the HLA-A2 or A24 genotype.MethodsNine patients with recurrent high-grade gliomas including 7 with GBMs who fulfilled eligibility criteria were enrolled into a phase I study of monocyte-derived DC-based immunotherapy. HLA-genotyping revealed 1 case of HLA-A*0201 and 8 cases of A*2402. Enriched monocytes obtained using OptiPrepTM from leukapheresis products on day1, were incubated with GM-CSF and IL-4 in a closed serum-free system, and activated on day6 with TNF-α, IL-1β, IFN-α, IFN-γ, and poly I/C. After pulsing with a cocktail of 5 synthetic peptides (WT-1, HER2, MAGE-A3, and MAGE-A1 or gp100) restricted to HLA-A2 or A24 and KLH, cells were cryopreserved until used. Thawed DCs were injected intradermally in the posterior neck at a dose per cohort of 1.0, 2.0 and 5.0× 107/body.ResultsThe frequency of CD14+ monocytes increased to 44.6% from 11.9% after gradient centrifugation. After a 7-day-incubation with cytokines, the mean percentage of DCs rated as lin-HLA-DR+ in patients was 56.2 ± 19.1%. Most DCs expressed high levels of maturation markers, co-stimulatory molecules and type-1 phenotype (CD11c+HLA-DR+) with a DC1/2 ratio of 35.6. The amount of IL-12 produced from activated DCs was 1025 ± 443 pg/ml per 105 cells. All 76 DC injections were well tolerated except for transient liver dysfunction with grade II. Six patients showed positive immunological responses to peptides in an ELISPOT assay, and positive skin tests to peptide-pulsed DC and KLH were recognized in 4 cases. The clinical response to DC injections was as follows :1 SD and 8 PD. Interestingly, the SD patient, given 24 DC injections, showed a long-term recurrence-free and immunological positive response period.ConclusionsThese results indicate peptide cocktail-treated activated α-type-1 DC-based immunotherapy to be a potential therapeutic tool against recurrent high-grade glioma with mainly HLA-A*2402.Trial registrationCurrent non-randomized investigational trial UMIN-CTR UMIN ID: 000000914.
International Journal of Oncology | 2013
Tadashi Ashizawa; Haruo Miyata; Akira Iizuka; Masaru Komiyama; Chie Oshita; Akiko Kume; Masahiro Nogami; Mika Yagoto; Ichiro Ito; Takuma Oishi; Reiko Watanabe; Koichi Mitsuya; Kenji Matsuno; Toshio Furuya; Tadashi Okawara; Masami Otsuka; Naohisa Ogo; Akira Asai; Yoko Nakasu; Ken Yamaguchi; Yasuto Akiyama
Signal transducer and activator of transcription (STAT) 3, a member of a family of DNA-binding molecules, is a potential target in the treatment of cancer. The highly phosphorylated STAT3 in cancer cells contributes to numerous physiological and oncogenic signaling pathways. Furthermore, a significant association between STAT3 signaling and glioblastoma multiforme stem-like cell (GBM-SC) development and maintenance has been demonstrated in recent studies. Previously, we reported a novel small molecule inhibitor of STAT3 dimerization, STX-0119, as a cancer therapeutic. In the present study, we focused on cancer stem-like cells derived from recurrent GBM patients and investigated the efficacy of STX-0119. Three GBM stem cell lines showed many stem cell markers such as CD133, EGFR, Nanog, Olig2, nestin and Yamanaka factors (c-myc, KLF4, Oct3/4 and SOX2) compared with parental cell lines. These cell lines also formed tumors in vivo and had similar histological to surgically resected tumors. STAT3 phosphorylation was activated more in the GBM-SC lines than serum-derived GB cell lines. The growth inhibitory effect of STX-0119 on GBM-SCs was moderate (IC50 15-44 µM) and stronger compared to that of WP1066 in two cell lines. On the other hand, the effect of temozolomide was weak in all the cell lines (IC50 53-226 µM). Notably, STX-0119 demonstrated strong inhibition of the expression of STAT3 target genes (c-myc, survivin, cyclin D1, HIF-1α and VEGF) and stem cell-associated genes (CD44, Nanog, nestin and CD133) as well as the induction of apoptosis in one stem-like cell line. Interestingly, VEGFR2 mRNA was also remarkably inhibited by STX-0119. In a model using transplantable stem-like cell lines in vivo GB-SCC010 and 026, STX-0119 inhibited the growth of GBM-SCs at 80 mg/kg. STX-0119, an inhibitor of STAT3, may serve as a novel therapeutic compound against GBM-SCs even in temozolomide-resistant GBM patients and has the potential for GBM-SC-specific therapeutics in combination with temozolomide plus radiation therapy.
Oncology Reports | 2014
Yasuto Akiyama; Tadashi Ashizawa; Masaru Komiyama; Haruo Miyata; Chie Oshita; Maho Omiya; Akira Iizuka; Akiko Kume; Takashi Sugino; Nakamasa Hayashi; Koichi Mitsuya; Yoko Nakasu; Ken Yamaguchi
The frequent recurrence of glioblastoma multiforme (GBM) after standard treatment with temozolomide (TMZ) is a crucial issue to be solved in the clinical field. O6‑methylguanine‑DNA methyltransferase (MGMT) is considered one of the major mechanisms involved in TMZ resistance. However, some important mechanisms for TMZ resistance other than MGMT have recently been identified. In the present study, we established a TMZ-resistant (TMZ-R) U87 glioblastoma cell line in vitro and in vivo and investigated novel targeting molecules other than MGMT in those cells. The TMZ-R U87 glioblastoma cell line was established in vitro and in vivo. TMZ-R U87 cells showed a more invasive activity and a shorter survival time in vivo. Gene expression analysis using DNA microarray and quantitative PCR (qPCR) demonstrated that YKL‑40, MAGEC1 and MGMT mRNA expression was upregulated 100-, 83- and 6-fold, respectively in the TMZ-R U87 cell line. Western blot analysis and qPCR demonstrated that STAT3 phosphorylation, STAT3 target genes and stem cell and mesenchymal marker genes were upregulated to a greater extent in the TMZ‑resistant cell line. Notably, short hairpin (sh)RNA‑based inhibition against the YKL‑40 gene resulted in moderate growth inhibition in the resistant cells in vitro and in vivo. Additionally, YKL‑40 gene inhibition exhibited significant suppression of the invasive activity and particularly partially restored the sensitivity to TMZ. Therefore, YKL‑40 may be a novel key molecule in addition to MGMT, that is responsible for TMZ resistance in glioblastoma cell lines and could be a new target to overcome TMZ resistance in recurrent glioblastomas in the future.
International Journal of Oncology | 2014
Tadashi Ashizawa; Yasuto Akiyama; Haruo Miyata; Akira Iizuka; Masaru Komiyama; Akiko Kume; Maho Omiya; Takashi Sugino; Akira Asai; Nakamasa Hayashi; Koichi Mitsuya; Yoko Nakasu; Ken Yamaguchi
Glioblastoma multiforme (GBM) is one of the most malignant and aggressive tumors and has a very poor prognosis, with a median survival time of less than 2 years. Once recurrence develops, there are few therapeutic approaches to control the growth of glioblastoma. In particular, temozolomide (TMZ)-resistant (TMZ-R) GBM is very difficult to treat, and a novel approach to overcome resistance is eagerly awaited. Previously, we reported a novel small molecule inhibitor of STAT3 dimerization, STX-0119, as a cancer therapeutic. In the current study, the efficacy of STX-0119 was evaluated against our established TMZ-resistant U87 cell line using quantitative PCR-based gene expression analysis, in vitro assay and animal experiments. The growth inhibitory effect of STX-0119 on U87 and TMZ-R U87 cells was moderate (IC₅₀, 34 and 45 µM, respectively). In particular, STX-0119 did not show significant inhibition of U87 tumor growth; however, it suppressed the growth of the TMZ-R U87 tumor in nude mice by more than 50%, and prolonged the median survival time compared to the control group. Quantitative PCR revealed that YKL-40, MAGEC1, MGMT, several EMT genes, mesenchymal genes and STAT3 target genes were upregulated, but most of those genes were downregulated by STX-0119 treatment. Furthermore, the invasive activity of TMZ-R U87 cells was significantly inhibited by STX-0119. YKL-40 levels in TMZ-R U87 cells and their supernatants were significantly decreased by STX-0119 administration. These results suggest that STX-0119 is an efficient therapeutic to overcome TMZ resistance in recurrent GBM tumors, and could be the next promising compound leading to survival prolongation, and YKL-40 may be a possible surrogate marker for STAT3 targeting.
Oncology Reports | 2014
Yasuto Akiyama; Masaru Komiyama; Haruo Miyata; Mika Yagoto; Tadashi Ashizawa; Akira Iizuka; Chie Oshita; Akiko Kume; Masahiro Nogami; Ichiro Ito; Reiko Watanabe; Takashi Sugino; Koichi Mitsuya; Nakamasa Hayashi; Yoko Nakasu; Ken Yamaguchi
Glioblastoma multiforme (GBM) is one of the most malignant and aggressive tumors, and has a very poor prognosis with a mean survival time of <2 years, despite intensive treatment using chemo-radiation. Therefore, novel therapeutic approaches including immunotherapy have been developed against GBM. For the purpose of identifying novel target antigens contributing to GBM treatment, we developed 17 primary glioma cell lines derived from high-grade glioma patients, and analyzed the expression of various tumor antigens and glioma-associated markers using a quantitative PCR and immunohistochemistry (IHC). A quantitative PCR using 54 cancer-testis (CT) antigen-specific primers showed that 36 CT antigens were positive in at least 1 of 17 serum-derived cell lines, and 17 antigens were positive in >50% cell lines. Impressively, 6 genes (BAGE, MAGE-A12, CASC5, CTAGE1, DDX43 and IL-13RA2) were detected in all cell lines. The expression of other 13 glioma-associated antigens than CT genes were also investigated, and 10 genes were detected in >70% cell lines. The expression of CT antigen and glioma-associated antigen genes with a high frequency were also verified in IHC analysis. Moreover, a relationship of antigen gene expressions with a high frequency to overall survival was investigated using the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database of the National Cancer Institute, and expression of 6 genes including IL-13RA2 was inversely correlated to overall survival time. Furthermore, 4 genes including DDX43, TDRD1, HER2 and gp100 were identified as MGMT-relevant factors. In the present study, several CT antigen including novel genes were detected in high-grade glioma primary cell lines, which might contribute to developing novel immunotherapy and glioma-specific biomarkers in future.
Cancer Immunology, Immunotherapy | 2012
Yasuto Akiyama; Masaru Komiyama; Yoji Nakamura; Akira Iizuka; Chie Oshita; Akiko Kume; Masahiro Nogami; Haruo Miyata; Tadashi Ashizawa; Shusuke Yoshikawa; Yoshio Kiyohara; Ken Yamaguchi
Many cancer-testis antigen genes have been identified; however, few human leukocyte antigen (HLA)-A24-restricted cytotoxic T cell (CTL) epitope peptides are available for clinical immunotherapy. To solve this problem, novel tools increasing the efficacy and accuracy of CTL epitope detection are needed. In the present study, we utilized a highly active dendritic cell (DC)-culture method and an in silico HLA-A24 peptide-docking simulation assay to identify novel CTL epitopes from MAGE-A6 and MAGE-A12 antigens. The highly active DCs, called α-type-1 DCs, were prepared using a combination of maturation reagents to produce a large amount of interleukin-12. Meanwhile, our HLA-A24 peptide-docking simulation assay was previously demonstrated to have an obvious advantage of accuracy over the conventional prediction tool, bioinformatics and molecular analysis section. For CTL induction assays, peripheral blood mononuclear cells derived from six cases of HLA-A24+ melanoma were used. Through CTL induction against melanoma cell lines and peptide-docking simulation assays, two peptides (IFGDPKKLL from MAGE-A6 and IFSKASEYL from MAGE-A12) were identified as novel CTL epitope candidates. Finally, we verified that the combination of the highly active DC-culture method and HLA-A24 peptide-docking simulation assay might be tools for predicting CTL epitopes against cancer antigens.
Biotechnology and Bioengineering | 2008
Hironori Iida; Kosuke Takayanagi; Takuya Nakanishi; Akiko Kume; Kouji Muramatsu; Yoshio Kiyohara; Yasuto Akiyama; Tetsuya Osaka
Preparation of human immune T cells containing iron‐oxide nanoparticles was carried out for the development of magnetically mediated immunotherapy. Peripheral blood lymphocytes (PBLs) after the incubation with magnetite nanoparticles were found to contain measurable ferric ions, which suggested the incorporation of magnetite nanoparticles. Transmission electron microscopic (TEM) study indicated that the incorporation of magnetite nanoparticles was mediated by endocytosis of PBLs. Furthermore, the effects of dosages and diameter of magnetite nanoparticles on the magnetite incorporation were investigated, and it was demonstrated that the increase in dosage promoted the incorporation of nanoparticles and the uptake into PBLs was more effective for magnetite nanoparticles, which formed smaller aggregations in medium. Finally, the demonstration of magnetite incorporation into enriched T cells and tumor antigen‐specific cytotoxic T lymphocyte (CTL) line promises the achievement of magnetically mediated immunotherapy with tumor‐specific CTLs containing magnetic nanoparticles. Biotechnol. Bioeng.
Immunology Letters | 2011
Akira Iizuka; Masaru Komiyama; Sachiko Tai; Chie Oshita; Ayumi Kurusu; Akiko Kume; Kazumichi Ozawa; Yoji Nakamura; Tadashi Ashizawa; Akifumi Yamamoto; Naoya Yamazaki; Shusuke Yoshikawa; Yoshio Kiyohara; Ken Yamaguchi; Yasuto Akiyama
Recently, because of highly advanced protein engineering technology, beyond the chimeric antibody, highly humanized and fully human antibody development is becoming crucial in the medical field. In the last decade, investigational approaches using clinical samples for fully human antibody production have been performed, but there are still problems with efficiency and accuracy, which should be solved. In the present study, based on novel IgG antibody-measuring ELISA and antibody gene copy number-quantitative PCR, a human single B cell RT-PCR-mediated IgG monoclonal antibody (mAb) gene cloning method was established, and CMVpp65-specific human mAbs were successfully identified. Quantitative PCR for the human IgG mRNA copy number per cell demonstrated that the detection range was 10-250copies/cell. CMVpp65(+)surfaceIgG(+) B cells were collected from melanoma patients who showed high titers of serum anti-CMVpp65 IgG antibody. RT-PCR was successful in 64% (IGH) and 84% (β-actin) of 88 single B cells. Finally, both IGH and IGL gene amplifications in the same cell were successful in 21 single cells, and 18 IgG antibody genes specific for CMVpp65 antigen were cloned. Four of 13 recombinant human single-chain fragment variable (scFv) antibodies showed strong responses to full-length CMVpp65 protein. These results suggested that the current fully human mAb production procedure through antibody-titer screening by ELISA, single B cell RT-PCR-based antibody gene cloning, and the making of scFv recombinant antibody is an efficient method of therapeutic antibody development.
Cancer Science | 2015
Keita Inoue; Noriko Saegusa; Maho Omiya; Tadashi Ashizawa; Haruo Miyata; Masaru Komiyama; Akira Iizuka; Akiko Kume; Takashi Sugino; Ken Yamaguchi; Yoshio Kiyohara; Masahiro Nakagawa; Yasuto Akiyama
Local recurrence is a major clinical issue following surgical resection in head and neck cancer, and the dissemination and lymph node metastasis of minimal residual disease is relatively difficult to treat due to the lack of suitable therapeutic approaches. In the present study, we developed and evaluated a novel immunotherapy using a skin flap transfer treated with sensitized dendritic cells (DC), termed the “immuno‐flap,” in a rat tumor model. After the local round area of skin was resected, SCC‐158 cells (a rat head and neck cancer cell line) were inoculated into the muscle surface; lastly, the groin skin flap injected with mature DC was overlaid. Two weeks after the second DC injection, systemic immunological reactions and tumor size were measured. The DC‐treated group showed a significant reduction in tumor size compared with the control. Although the induction of CTL activity in spleen cells was marginal, Th1 cytokines such as interleukin‐2 and interferon‐γ were elevated in the DC‐treated group. These results suggest that a novel immunotherapy based on the immuno‐flap method has the potential for clinical application to prevent the local recurrence of head and neck cancer patients.