Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiko Sugio is active.

Publication


Featured researches published by Akiko Sugio.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Os8N3 is a host disease-susceptibility gene for bacterial blight of rice

Bing Yang; Akiko Sugio; Frank F. White

Many bacterial diseases of plants depend on the interaction of type III effector genes of the pathogen and disease-susceptibility genes of the host. The host susceptibility genes are largely unknown. Here, we show that expression of the rice gene Os8N3, a member of the MtN3 gene family from plants and animals, is elevated upon infection by Xanthomonas oryzae pv. oryzae strain PXO99A and depends on the type III effector gene pthXo1. Os8N3 resides near xa13, and PXO99A failed to induce Os8N3 in rice lines with xa13. Silencing of Os8N3 by inhibitory RNA produced plants that were resistant to infection by strain PXO99A yet remained susceptible to other strains of the pathogen. The effector gene avrXa7 from strain PXO86 enabled PXO99A compatibility on either xa13- or Os8N3-silenced plants. The findings indicate that Os8N3 is a host susceptibility gene for bacterial blight targeted by the type III effector PthXo1. The results support the hypothesis that X. oryzae pv. oryzae commandeers the regulation of otherwise developmentally regulated host genes to induce a state of disease susceptibility. Furthermore, the results support a model in which the pathogen induces disease susceptibility in a gene-for-gene manner.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis

Akiko Sugio; Heather N. Kingdom; Allyson M. MacLean; Saskia A. Hogenhout

Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB–infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB–infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen–host interface to modulate a third organism in the biological interaction.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice

Akiko Sugio; Bing Yang; Tong Zhu; Frank F. White

Xanthomonas oryzae pv. oryzae strain PXO99A induces the expression of the host gene Os8N3, which results in increased host susceptibility to bacterial blight of rice. Here, we show that PXO99A affects the expression of two additional genes in a type III secretion system-dependent manner, one encoding a bZIP transcription factor (OsTFX1) and the other the small subunit of the transcription factor IIA located on chromosome 1 (OsTFIIAγ1). Induction of OsTFX1 and OsTFIIAγ1 depended on the type III effector genes pthXo6 and pthXo7, respectively, both encoding two previously undescribed members of the transcription activator-like (TAL) effector family. pthXo7 is strain-specific and may reflect adaptation to the resistance mediated by xa5, an allele of OsTFIIAγ5 encoding a second form of the TFIIA small subunit on chromosome 5 of rice. The loss of pthXo6 resulted in reduced pathogen virulence, and ectopic expression of OsTFX1 abrogated the requirement for pthXo6 for full virulence. X. oryzae pv. oryzae therefore modulates the expression of multiple host genes using multiple TAL effectors from a single strain, and evidence supports the hypothesis that expression of the associated host genes contributes to host susceptibility to disease.


The Plant Cell | 2009

The Cytosolic Protein Response as a Subcomponent of the Wider Heat Shock Response in Arabidopsis

Akiko Sugio; René Dreos; Frederic Aparicio; Andrew J. Maule

In common with a range of environmental and biological stresses, heat shock results in the accumulation of misfolded proteins and a collection of downstream consequences for cellular homeostasis and growth. Within this complex array of responses, the sensing of and responses to misfolded proteins in specific subcellular compartments involves specific chaperones, transcriptional regulators, and expression profiles. Using biological (ectopic protein expression and virus infection) and chemical triggers for misfolded protein accumulation, we have profiled the transcriptional features of the response to misfolded protein accumulation in the cytosol (i.e., the cytoplasmic protein response [CPR]) and identified the effects as a subcomponent of the wider effects induced by heat shock. The CPR in Arabidopsis thaliana is associated with the heat shock promoter element and the involvement of specific heat shock factors (HSFs), notably HSFA2, which appears to be regulated by alternative splicing and non-sense-mediated decay. Characterization of Arabidopsis HSFA2 knockout and overexpression lines showed that HSFA2 is one of the regulatory components of the CPR.


Plant Physiology | 2011

Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants

Allyson M. MacLean; Akiko Sugio; Olga Makarova; Kim Findlay; Réka Tóth; Mogens Nicolaisen; Saskia A. Hogenhout

Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.


Molecular Plant-microbe Interactions | 2005

Avoidance of host recognition by alterations in the repetitive and C-terminal regions of AvrXa7, a type III effector of Xanthomonas oryzae pv. oryzae.

Bing Yang; Akiko Sugio; Frank F. White

avrXa7 is a member of the avrBs3/pthA gene family. The gene is a critical type III effector in several strains of Xanthomonas oryzae pv. oryzae (virulence activity), and in the presence of the Xa7 host gene for resistance, controls the elicitation of resistance in rice (avirulence activity). The ability of strains containing avrXa7 to adapt to the presence of Xa7 in the host population is dependent, in part, on the genetic plasticity of avrXa7. The potential for the conversion of avrXa7 to a virulence effector without Xa7-dependent elicitor activity was examined. Internal reorganization of avrXa7 by artificially deleting a portion of the central repetitive region resulted in gene pthXo4, which retained virulence activity and lost Xa7-dependent avirulence activity. Similarly, spontaneous rearrangements between repetitive regions of avrXa7 during bacterial culture gave rise to gene pthXo5, which also had virulence activity without Xa7-dependent avirulence activity. pthXo5 appeared to be the result of recombination between avrXa7 and a related gene in the genome. Loss of avirulence activity and retention of virulence activity also resulted from replacement of a portion of the C-terminal coding region of avrXa7 with the corresponding sequence from avrBs3. The results demonstrated the potential for a critical virulence effector to lose avirulence activity while retaining effector function. The results also demonstrated that features of both repetitive and nonrepetitive C-terminal regions of AvrXa7 are involved in avirulence specificity.


Journal of Experimental Botany | 2015

Plant–insect interactions under bacterial influence: ecological implications and underlying mechanisms

Akiko Sugio; Géraldine Dubreuil; David Giron; Jean-Christophe Simon

Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted.


Molecular Plant-microbe Interactions | 2005

Characterization of the hrpF Pathogenicity Peninsula of Xanthomonas oryzae pv. oryzae

Akiko Sugio; Bing Yang; Frank F. White

The hrp gene cluster of Xanthomonas spp. contains genes for the assembly and function of a type III secretion system (TTSS). The hrpF genes reside in a region between hpaB and the right end of the hrp cluster. The region of the hrpF gene of Xanthomonas oryzae pv. oryzae is bounded by two IS elements and also contains a homolog of hpaF of X. campestris pv. vesicatoria and two newly identified genes, hpa3 and hpa4. A comparison of the hrp gene clusters of different species of Xanthomonas revealed that the hrpF region is a constant yet more variable peninsula of the hrp pathogenicity island. Mutations in hpaF, hpa3, and hpa4 had no effect on virulence, whereas hrpF mutants were severely reduced in virulence on susceptible rice cultivars. The hrpF genes from X. campestris pv. vesicatoria, X. campestris pv. campestris, and X. axonopodis pv. citri each were capable of restoring virulence to the hrpF mutant of X. oryzae pv. oryzae. Correspondingly, none of the Xanthomonas pathovars with hrpF from X. oryzae pv. oryzae elicited a hypersensitive reaction in their respective hosts. Therefore, no evidence was found for hrpF as a host-specialization factor. In contrast to the loss of Bs3-dependent reactions by hrpF mutants of X. campestris pv. vesicatoria, hrpF mutants of X. oryzae pv. oryzae with either avrXa10 or avrXa7 elicited hypersensitive reactions in rice cultivars with the corresponding R genes. A double hrpFxoo-hpa1 mutant also elicited an Xa10-dependent resistance reaction. Thus, loss of hrpF, hpal, or both may reduce delivery or effectiveness of type III effectors. However, the mutations did not completely prevent the delivery of effectors from X. oryzae pv. oryzae into the host cells.


Molecular Plant-microbe Interactions | 2006

Inhibition of Resistance Gene-Mediated Defense in Rice by Xanthomonas oryzae pv. oryzicola

Seiko Makino; Akiko Sugio; Frank F. White; Adam J. Bogdanove

Xanthomonas oryzae pv. oryzae and the closely related X. oryzae pv. oryzicola cause bacterial blight and bacterial leaf streak of rice, respectively. Although many rice resistance (R) genes and some corresponding avirulence (avr) genes have been characterized for bacterial blight, no endogenous avr/R gene interactions have been identified for leaf streak. Genes avrXa7 and avrXa10 from X. oryzae pv. oryzae failed to elicit the plant defense-associated hypersensitive reaction (HR) and failed to prevent development of leaf streak in rice cultivars with the corresponding R genes after introduction into X. oryzae pv. oryzicola despite the ability of this pathovar to deliver an AvrXa10:Cya fusion protein into rice cells. Furthermore, coinoculation of X. oryzae pv. oryzicola inhibited the HR of rice cultivar IRBB10 to X. oryzae pv. oryzae carrying avrXa10. Inhibition was quantitative and dependent on the type III secretion system of X. oryzae pv. oryzicola. The results suggest that one or more X. oryzae pv. oryzicola type III effectors interfere with avr/R gene-mediated recognition or signaling and subsequent defense response in the host. Inhibition of R gene-mediated defense by X. oryzae pv. oryzicola may explain, in part, the apparent lack of major gene resistance to leaf streak.


New Phytologist | 2014

The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN‐TCP binding and destabilization

Akiko Sugio; Allyson M. MacLean; Saskia A. Hogenhout

Phytoplasmas are insect-transmitted bacterial phytopathogens that secrete virulence effectors and induce changes in the architecture and defense response of their plant hosts. We previously demonstrated that the small (± 10 kDa) virulence effector SAP11 of Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) binds and destabilizes Arabidopsis CIN (CINCINNATA) TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 AND 2) transcription factors, resulting in dramatic changes in leaf morphogenesis and increased susceptibility to phytoplasma insect vectors. SAP11 contains a bipartite nuclear localization signal (NLS) that targets this effector to plant cell nuclei. To further understand how SAP11 functions, we assessed the involvement of SAP11 regions in TCP binding and destabilization using a series of mutants. SAP11 mutants lacking the entire N-terminal domain, including the NLS, interacted with TCPs but did not destabilize them. SAP11 mutants lacking the C-terminal domain were impaired in both binding and destabilization of TCPs. These SAP11 mutants did not alter leaf morphogenesis. A SAP11 mutant that did not accumulate in plant nuclei (SAP11ΔNLS-NES) was able to bind and destabilize TCP transcription factors, but instigated weaker changes in leaf morphogenesis than wild-type SAP11. Overall the results suggest that phytoplasma effector SAP11 has a modular organization in which at least three domains are required for efficient CIN-TCP destabilization in plants.

Collaboration


Dive into the Akiko Sugio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrice Legeai

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Christophe Simon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bing Yang

Iowa State University

View shared research outputs
Top Co-Authors

Avatar

Anthony Bretaudeau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Florian Maumus

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Manuella van Munster

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marilyne Uzest

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Patrice Baa-Puyoulet

Institut national des sciences Appliquées de Lyon

View shared research outputs
Researchain Logo
Decentralizing Knowledge