Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrice Baa-Puyoulet is active.

Publication


Featured researches published by Patrice Baa-Puyoulet.


Genome Biology | 2017

Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species

Thomas C. Mathers; Yazhou Chen; Gemy Kaithakottil; Fabrice Legeai; Sam T. Mugford; Patrice Baa-Puyoulet; Anthony Bretaudeau; Bernardo Clavijo; Stefano Colella; Olivier Collin; Tamas Dalmay; Thomas Derrien; Honglin Feng; Toni Gabaldón; Anna Jordan; Irene Julca; Graeme J. Kettles; Krissana Kowitwanich; Dominique Lavenier; Paolo Lenzi; Sara Lopez-Gomollon; Damian Loska; Daniel Mapleson; Florian Maumus; Simon Moxon; Daniel R.G. Price; Akiko Sugio; Manuella van Munster; Marilyne Uzest; Darren Waite

BackgroundThe prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species.ResultsTo investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes.ConclusionsPrevious research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution.


BMC Genomics | 2013

Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development

Andréane Rabatel; Gérard Febvay; Karen Gaget; Gabrielle Duport; Patrice Baa-Puyoulet; Panagiotis Sapountzis; Nadia Bendridi; Marjolaine Rey; Yvan Rahbé; Hubert Charles; Federica Calevro; Stefano Colella

BackgroundNutritional symbioses play a central role in insects’ adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology.ResultsWe used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch over to the late embryonic stages in pea aphid development.ConclusionsOur data show that, in the development of A. pisum, a specific host gene set regulates the biosynthetic pathways of amino acids, demonstrating how the regulation of gene expression enables an insect to control the production of metabolites crucial for its own development and symbiotic metabolism.


Database | 2011

CycADS: an annotation database system to ease the development and update of BioCyc databases

Augusto Vellozo; Amélie S. Véron; Patrice Baa-Puyoulet; Jaime Huerta-Cepas; Ludovic Cottret; Gérard Febvay; Federica Calevro; Yvan Rahbé; Angela E. Douglas; Toni Gabaldón; Marie-France Sagot; Hubert Charles; Stefano Colella

In recent years, genomes from an increasing number of organisms have been sequenced, but their annotation remains a time-consuming process. The BioCyc databases offer a framework for the integrated analysis of metabolic networks. The Pathway tool software suite allows the automated construction of a database starting from an annotated genome, but it requires prior integration of all annotations into a specific summary file or into a GenBank file. To allow the easy creation and update of a BioCyc database starting from the multiple genome annotation resources available over time, we have developed an ad hoc data management system that we called Cyc Annotation Database System (CycADS). CycADS is centred on a specific database model and on a set of Java programs to import, filter and export relevant information. Data from GenBank and other annotation sources (including for example: KAAS, PRIAM, Blast2GO and PhylomeDB) are collected into a database to be subsequently filtered and extracted to generate a complete annotation file. This file is then used to build an enriched BioCyc database using the PathoLogic program of Pathway Tools. The CycADS pipeline for annotation management was used to build the AcypiCyc database for the pea aphid (Acyrthosiphon pisum) whose genome was recently sequenced. The AcypiCyc database webpage includes also, for comparative analyses, two other metabolic reconstruction BioCyc databases generated using CycADS: TricaCyc for Tribolium castaneum and DromeCyc for Drosophila melanogaster. Linked to its flexible design, CycADS offers a powerful software tool for the generation and regular updating of enriched BioCyc databases. The CycADS system is particularly suited for metabolic gene annotation and network reconstruction in newly sequenced genomes. Because of the uniform annotation used for metabolic network reconstruction, CycADS is particularly useful for comparative analysis of the metabolism of different organisms. Database URL: http://www.cycadsys.org


bioRxiv | 2017

Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome

Kristen A. Panfilio; Iris M. Vargas Jentzsch; Joshua B. Benoit; Deniz Erezyilmaz; Yuichiro Suzuki; Stefano Colella; Hugh M. Robertson; Monica Poelchau; Robert M. Waterhouse; Panagiotis Ioannidis; Matthew T. Weirauch; Daniel S.T. Hughes; Shwetha C. Murali; John H. Werren; Chris G.C. Jacobs; Elizabeth J. Duncan; David Armisén; Barbara M.I. Vreede; Patrice Baa-Puyoulet; Chloé Suzanne Berger; Chun-che Chang; Hsu Chao; Mei-Ju M. Chen; Yen-Ta Chen; Christopher Childers; Ariel D. Chipman; Andrew G. Cridge; Antonin Jean Johan Crumière; Peter K. Dearden; Elise M. Didion

Background The Hemiptera (aphids, cicadas, and true bugs) are a key insect order whose members offer a close outgroup to the Holometabola, with high diversity within the order for feeding ecology and excellent experimental tractability for molecular genetics. Sequenced genomes have recently become available for hemipteran pest species such as phloem-feeding aphids and blood-feeding bed bugs. To complement and build upon these resources, we present the genome sequence and comparative analyses centered on the large milkweed bug, Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. Results The 926-Mb genome of Oncopeltus is relatively well represented by the current assembly and official gene set, which supports Oncopeltus as a fairly conservative hemipteran species for anchoring molecular comparisons. We use our genomic and RNA-seq data not only to characterize features of the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins and of intron gain and turnover in the Hemiptera. These analyses also weigh the relative importance of lineage and genome size as predictors of gene structure evolution in insects. Furthermore, we identify enzymatic gains and losses that correlate with hemipteran feeding biology, particularly for reductions in chemoreceptor family size and loss of metabolic reactions within species with derived, fluid-nutrition feeding modes. Conclusions With the milkweed bug genome, for the first time we have a critical mass of sequenced species representing a hemimetabolous insect order, substantially improving the diversity of insect genomics beyond holometabolans such as flies and ants. We use this addition to define commonalities among the Hemiptera and then delve into how hemipteran species’ genomes reflect their feeding ecology types. Our novel and detailed analyses integrate global and rigorous manual approaches, generating hypotheses and identifying specific sets of genes for future investigation. Given Oncopeltus’s strength as an experimental research model, we take particular care to evaluate the sequence resources presented here, augmenting its foundation for molecular research and highlighting potentially general considerations exemplified in the assembly and annotation of this medium-sized genome.


bioRxiv | 2016

A clonally reproducing generalist aphid pest colonises diverse host plants by rapid transcriptional plasticity of duplicated gene clusters

Thomas C. Mathers; Yazhou Chen; Gemy Kaithakottil; Fabrice Legeai; Sam T. Mugford; Patrice Baa-Puyoulet; Anthony Bretaudeau; Bernardo Clavijo; Stefano Colella; Olivier Collin; Tamas Dalmay; Thomas Derrien; Honglin Feng; Toni Gabaldón; Anna Jordan; Irene Julca; Graeme J. Kettles; Krissana Kowitwanich; Dominique Lavenier; Paolo Lenzi; Sara Lopez-Gomollon; Damian Loska; Daniel Mapleson; Florian Maumus; Simon Moxon; Daniel R.G. Price; Akiko Sugio; Manuella van Munster; Marilyne Uzest; Darren Waite

Background The prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception, and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species. Results To investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively up-regulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced up-regulation of these genes. Conclusions Previous research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution.


Database | 2016

ArthropodaCyc: a CycADS powered collection of BioCyc databases to analyse and compare metabolism of arthropods

Patrice Baa-Puyoulet; Nicolas Parisot; Gérard Febvay; Jaime Huerta-Cepas; Augusto F. Vellozo; Toni Gabaldón; Federica Calevro; Hubert Charles; Stefano Colella

Abstract Arthropods interact with humans at different levels with highly beneficial roles (e.g. as pollinators), as well as with a negative impact for example as vectors of human or animal diseases, or as agricultural pests. Several arthropod genomes are available at present and many others will be sequenced in the near future in the context of the i5K initiative, offering opportunities for reconstructing, modelling and comparing their metabolic networks. In-depth analysis of these genomic data through metabolism reconstruction is expected to contribute to a better understanding of the biology of arthropods, thereby allowing the development of new strategies to control harmful species. In this context, we present here ArthropodaCyc, a dedicated BioCyc collection of databases using the Cyc annotation database system (CycADS), allowing researchers to perform reliable metabolism comparisons of fully sequenced arthropods genomes. Since the annotation quality is a key factor when performing such global genome comparisons, all proteins from the genomes included in the ArthropodaCyc database were re-annotated using several annotation tools and orthology information. All functional/domain annotation results and their sources were integrated in the databases for user access. Currently, ArthropodaCyc offers a centralized repository of metabolic pathways, protein sequence domains, Gene Ontology annotations as well as evolutionary information for 28 arthropod species. Such database collection allows metabolism analysis both with integrated tools and through extraction of data in formats suitable for systems biology studies. Database URL: http://arthropodacyc.cycadsys.org/


Frontiers in Physiology | 2018

Bacteriocyte Reprogramming to Cope With Nutritional Stress in a Phloem Sap Feeding Hemipteran, the Pea Aphid Acyrthosiphon pisum

Stefano Colella; Nicolas Parisot; Pierre Simonet; Karen Gaget; Gabrielle Duport; Patrice Baa-Puyoulet; Yvan Rahbé; Hubert Charles; Gérard Febvay; Patrick Callaerts; Federica Calevro

Nutritional symbioses play a central role in the ability of insects to thrive on unbalanced diets and in ensuring their evolutionary success. A genomic model for nutritional symbiosis comprises the hemipteran Acyrthosiphon pisum, and the gamma-3-proteobacterium, Buchnera aphidicola, with genomes encoding highly integrated metabolic pathways. A. pisum feeds exclusively on plant phloem sap, a nutritionally unbalanced diet highly variable in composition, thus raising the question of how this symbiotic system responds to nutritional stress. We addressed this by combining transcriptomic, phenotypic and life history trait analyses to determine the organismal impact of deprivation of tyrosine and phenylalanine. These two aromatic amino acids are essential for aphid development, are synthesized in a metabolic pathway for which the aphid host and the endosymbiont are interdependent, and their concentration can be highly variable in plant phloem sap. We found that this nutritional challenge does not have major phenotypic effects on the pea aphid, except for a limited weight reduction and a 2-day delay in onset of nymph laying. Transcriptomic analyses through aphid development showed a prominent response in bacteriocytes (the core symbiotic tissue which houses the symbionts), but not in gut, thus highlighting the role of bacteriocytes as major modulators of this homeostasis. This response does not involve a direct regulation of tyrosine and phenylalanine biosynthetic pathway and transporter genes. Instead, we observed an extensive transcriptional reprogramming of the bacteriocyte with a rapid down-regulation of genes encoding sugar transporters and genes required for sugar metabolism. Consistently, we observed continued overexpression of the A. pisum homolog of RRAD, a small GTPase implicated in repressing aerobic glycolysis. In addition, we found increased transcription of genes involved in proliferation, cell size control and signaling. We experimentally confirmed the significance of these gene expression changes detecting an increase in bacteriocyte number and cell size in vivo under tyrosine and phenylalanine depletion. Our results support a central role of bacteriocytes in the aphid response to amino acid deprivation: their transcriptional and cellular responses fine-tune host physiology providing the host insect with an effective way to cope with the challenges posed by the variability in composition of phloem sap.


Genome Biology | 2017

Erratum to: Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. [Genome Biol. 18 (2017)(27)] DOI: 10.1186/s13059-016-1145-3

Thomas C. Mathers; Yazhou Chen; Gemy Kaithakottil; Fabrice Legeai; Sam T. Mugford; Patrice Baa-Puyoulet; Anthony Bretaudeau; Bernardo Clavijo; Stefano Colella; Olivier Collin; Tamas Dalmay; Thomas Derrien; Honglin Feng; Toni Gabaldón; Anna Jordan; Irene Julca; Graeme J. Kettles; Krissana Kowitwanich; Dominique Lavenier; Paolo Lenzi; Sara Lopez-Gomollon; Damian Loska; Daniel Mapleson; Florian Maumus; Simon Moxon; Daniel R.G. Price; Akiko Sugio; Manuella van Munster; Marilyne Uzest; Darren Waite

Thomas C. Mathers, Yazhou Chen, Gemy Kaithakottil, Fabrice Legeai, Sam T. Mugford, Patrice Baa-Puyoulet, Anthony Bretaudeau, Bernardo Clavijo, Stefano Colella, Olivier Collin, Tamas Dalmay, Thomas Derrien, Honglin Feng, Toni Gabaldón, Anna Jordan, Irene Julca, Graeme J. Kettles, Krissana Kowitwanich, Dominique Lavenier, Paolo Lenzi, Sara Lopez-Gomollon, Damian Loska, Daniel Mapleson, Florian Maumus, Simon Moxon, Daniel R. G. Price, Akiko Sugio, Manuella van Munster, Marilyne Uzest, Darren Waite, Georg Jander, Denis Tagu, Alex C. C. Wilson, Cock van Oosterhout, David Swarbreck and Saskia A. Hogenhout


F1000Research | 2014

Annotating arthropods genome to study and compare their metabolism: the ArthropodaCyc collection of Cyc databases powered by CycADS

Patrice Baa-Puyoulet; Augusto Vellozo; Jaime Huerta-Cepas; Gérard Febvay; Federica Calevro; Toni Gabaldón; Marie-France Sagot; Hubert Charles; Stefano Colella

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Annotating arthropods genome to study and compare their metabolism: the ArthropodaCyc collection of Cyc databases powered by CycADS Patrice Baa-Puyoulet, Augusto Vellozo, Jaime Huerta-Cepas, Gérard Febvay, Federica Calevro, Marie-France Sagot, Hubert Charles, Toni Gabaldon, Stefano Colella


F1000Research | 2015

From SymbAphidBase to SymbAphidCyc: two companion databases to study and compare aphid symbionts from genomes to metabolic pathways

Patrice Baa-Puyoulet; Mathieu Labernardiere; Nicolas Parisot; Jean-Pierre Gauthier; Gérard Febvay; Federica Calevro; Yvan Rahbé; Hubert Charles; Jean-Christophe Simon; Stefano Colella

Collaboration


Dive into the Patrice Baa-Puyoulet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Febvay

Institut national des sciences Appliquées de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvan Rahbé

Institut national des sciences Appliquées de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge