Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akimasa Seno is active.

Publication


Featured researches published by Akimasa Seno.


Journal of Immunology | 2015

DCIR Maintains Bone Homeostasis by Regulating IFN-γ Production in T Cells

Takumi Maruhashi; Tomonori Kaifu; Rikio Yabe; Akimasa Seno; Soo Hyun Chung; Noriyuki Fujikado; Yoichiro Iwakura

Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor mainly expressed in DCs. Dcir−/− mice spontaneously develop autoimmune enthesitis and ankylosis accompanied by fibrocartilage proliferation and ectopic ossification. However, the mechanisms of new bone/cartilage formation in Dcir−/− mice remain to be elucidated. In this study, we show that DCIR maintains bone homeostasis by regulating IFN-γ production under pathophysiological conditions. DCIR deficiency increased bone volume in femurs and caused aberrant ossification in joints, whereas these symptoms were abolished in Rag2−/−Dcir−/− mice. IFN-γ–producing T cells accumulated in lymph nodes and joints of Dcir−/− mice, and purified Dcir−/− DCs enhanced IFN-γ+ T cell differentiation. The ankylotic changes and bone volume increase were suppressed in the absence of IFN-γ. Thus, IFN-γ is a positive chondrogenic and osteoblastogenic factor, and DCIR is a crucial regulator of bone metabolism; consequently, both factors are potential targets for therapies directed against bone metabolic diseases.


Nature Communications | 2015

CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis

Masanori A. Murayama; Shigeru Kakuta; Asuka Inoue; Naoto Umeda; Tomo Yonezawa; Takumi Maruhashi; Koichiro Tateishi; Harumichi Ishigame; Rikio Yabe; Satoshi Ikeda; Akimasa Seno; Hsi-Hua Chi; Yuriko Hashiguchi; Riho Kurata; Takuya Tada; Sachiko Kubo; Nozomi Sato; Yang Liu; Masahira Hattori; Shinobu Saijo; Misao Matsushita; Teizo Fujita; Takayuki Sumida; Yoichiro Iwakura

The complement system is important for the host defence against infection as well as for the development of inflammatory diseases. Here we show that C1q/TNF-related protein 6 (CTRP6; gene symbol C1qtnf6) expression is elevated in mouse rheumatoid arthritis (RA) models. C1qtnf6−/− mice are highly susceptible to induced arthritis due to enhanced complement activation, whereas C1qtnf6-transgenic mice are refractory. The Arthus reaction and the development of experimental autoimmune encephalomyelitis are also enhanced in C1qtnf6−/− mice and C1qtnf6−/− embryos are semi-lethal. We find that CTRP6 specifically suppresses the alternative pathway of the complement system by competing with factor B for C3(H2O) binding. Furthermore, treatment of arthritis-induced mice with intra-articular injection of recombinant human CTRP6 cures the arthritis. CTRP6 is expressed in human synoviocytes, and CTRP6 levels are increased in RA patients. These results indicate that CTRP6 is an endogenous complement regulator and could be used for the treatment of complement-mediated diseases.


Translational Oncology | 2018

Up-Regulation of PI 3-Kinases and the Activation of PI3K-Akt Signaling Pathway in Cancer Stem-Like Cells Through DNA Hypomethylation Mediated by the Cancer Microenvironment

Aung Ko Ko Oo; Anna Sanchez Calle; Neha Nair; Hafizah Mahmud; Arun Vaidyanath; Junya Yamauchi; Aprilliana Khayrani; Juan Du; Jahangir Alam; Akimasa Seno; Akifumi Mizutani; Hiroshi Murakami; Yoshiaki Iwasaki; Ling Chen; Tomonari Kasai; Masaharu Seno

Previously, we have succeeded in converting induced pluripotent stem cells (iPSCs) into cancer stem cells (CSCs) by treating the iPSCs with conditioned medium of Lewis lung carcinoma (LLC) cells. The converted CSCs, named miPS-LLCcm cells, exhibited the self-renewal, differentiation potential, and potential to form malignant tumors with metastasis. In this study, we further characterized miPS-LLCcm cells both in vivo and in vitro. The tumors formed by subcutaneous injection showed the structures with pathophysiological features consisting of undifferentiated and malignant phenotypes generally found in adenocarcinoma. Metastasis in the lung was also observed as nodule structures. Excising from the tumors, primary cultured cells from the tumor and the nodule showed self-renewal, differentiation potential as well as tumor forming ability, which are the essential characters of CSCs. We then characterized the epigenetic regulation occurring in the CSCs. By comparing the DNA methylation level of CG rich regions, the differentially methylated regions (DMRs) were evaluated in all stages of CSCs when compared with the parental iPSCs. In DMRs, hypomethylation was found superior to hypermethylation in the miPS-LLCcm cells and its derivatives. The hypo- and hypermethylated genes were used to nominate KEGG pathways related with CSC. As a result, several categories were defined in the KEGG pathways from which most related with cancers, significant and high expression of components was PI3K-AKT signaling pathway. Simultaneously, the AKT activation was also confirmed in the CSCs. The PI3K-Akt signaling pathway should be an important pathway for the CSCs established by the treatment with conditioned medium of LLC cells.


International Journal of Molecular Sciences | 2018

Targeting glioblastoma cells expressing CD44 with liposomes encapsulating doxorubicin and displaying chlorotoxin-IgG Fc fusion protein

Hafizah Mahmud; Tomonari Kasai; Apriliana Cahya Khayrani; Mami Asakura; Aung Ko Ko Oo; Juan Du; Arun Vaidyanath; Samah El-Ghlban; Akifumi Mizutani; Akimasa Seno; Hiroshi Murakami; Junko Masuda; Masaharu Seno

We recently have established a successful xenograft model of human glioblastoma cells by enriching hyaluronic acid-dependent spheroid-forming populations termed U251MG-P1 cells from U251MG cells. Since U251MG-P1 cells have been confirmed to express CD44 along with principal stemness marker genes, OCT3/4, SOX2, KLF4 and Nanog, this CD44 expressing population appeared to majorly consist of undifferentiated cells. Evaluating the sensitivity to anti-cancer agents, we found U251MG-P1 cells were sensitive to doxorubicin with IC50 at 200 nM. Although doxorubicin has serious side-effects, establishment of an efficient therapy targeting undifferentiated glioblastoma cell population is necessary. We previously designed a chlorotoxin peptide fused to human IgG Fc region without hinge sequence (M-CTX-Fc), which exhibited a stronger growth inhibitory effect on the glioblastoma cell line A172 than an original chlorotoxin peptide. Combining these results together, we designed M-CTX-Fc conjugated liposomes encapsulating doxorubicin and used U251MG-P1 cells as the target model in this study. The liposome modified with M-CTX-Fc was designed with a diameter of approximately 100–150 nm and showed high encapsulation efficiency, adequate loading capacity of anticancer drug, enhanced antitumor effects demonstrating increasing uptake into the cells in vitro; M-CTX-Fc-L-Dox shows great promise in its ability to suppress tumor growth in vivo and it could serve as a template for targeted delivery of other therapeutics.


International Journal of Molecular Sciences | 2018

Cytokine Expression and Macrophage Localization in Xenograft and Allograft Tumor Models Stimulated with Lipopolysaccharide

Junko Masuda; Tsukasa Shigehiro; Takuma Matsumoto; Ayano Satoh; Akifumi Mizutani; Chiho Umemura; Shoki Saito; Mayumi Kijihira; Eiji Takayama; Akimasa Seno; Hiroshi Murakami; Masaharu Seno

T cell-deficient mice such as nude mice are often used to generate tumor xenograft for the development of anticancer agents. However, the functionality of the other immune cells including macrophages, dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs) in the xenograft are largely unknown. Macrophages and dendritic cells (DCs) acquire functionally distinct properties in response to various environmental stimuli; the interaction of these cells with MDSCs in tumor microenvironments regulates cancer progression. Nude mice are less likely to reject human cancer cells because of major histocompatibility complex (MHC) mismatches. The tumor microenvironment in a xenograft, comprising human and mouse cells, exhibits more complex bidirectional signaling and function than that of allograft. Here, we evaluated the differences of myeloid cells between them. Plasma interferon-γ and interleukin-18 concentrations in the xenograft tumor model after lipopolysaccharide (LPS) administration were significantly higher than those in the allograft tumor model. MHC class I, II, and CD80 expression levels were increased in CD11b+ and MDSC populations after LPS administration in the spleen of a xenograft tumor model but not in that of an allograft tumor model. Additionally, the number of CD80- and mannose receptor C type 1 (MRC1)-expressing cells was decreased upon LPS administration in the tumor of the xenograft tumor. These results suggest that functions of macrophages and DCs are sustained in the xenograft, whereas their functions in response to LPS were suppressed in the allograft. The findings will encourage the consideration of the effects of myeloid cells in the xenograft for drug development.


Nanomaterials | 2017

Practical Liposomal Formulation for Taxanes with Polyethoxylated Castor Oil and Ethanol with Complete Encapsulation Efficiency and High Loading Efficiency

Tsukasa Shigehiro; Junko Masuda; Shoki Saito; Apriliana Cahya Khayrani; Kazumasa Jinno; Akimasa Seno; Arun Vaidyanath; Akifumi Mizutani; Tomonari Kasai; Hiroshi Murakami; Ayano Satoh; Tetsuya Ito; Hiroki Hamada; Yuhki Seno; Tadakatsu Mandai; Masaharu Seno

Taxanes including paclitaxel and docetaxel are effective anticancer agents preferably sufficient for liposomal drug delivery. However, the encapsulation of these drugs with effective amounts into conventional liposomes is difficult due to their high hydrophobicity. Therefore, an effective encapsulation strategy for liposomal taxanes has been eagerly anticipated. In this study, the mixture of polyethoxylated castor oil (Cremophor EL) and ethanol containing phosphate buffered saline termed as CEP was employed as a solvent of the inner hydrophilic core of liposomes where taxanes should be incorporated. Docetaxel-, paclitaxel-, or 7-oxacetylglycosylated paclitaxel-encapsulating liposomes were successfully prepared with almost 100% of encapsulation efficiency and 29.9, 15.4, or 29.1 mol% of loading efficiency, respectively. We then applied the docetaxel-encapsulating liposomes for targeted drug delivery. Docetaxel-encapsulating liposomes were successfully developed HER2-targeted drug delivery by coupling HER2-specific binding peptide on liposome surface. The HER2-targeting liposomes exhibited HER2-specific internalization and enhanced anticancer activity in vitro. Therefore, we propose the sophisticated preparation of liposomal taxanes using CEP as a promising formulation for effective cancer therapies.


Journal of Stem Cell Research & Therapy | 2017

Hyaluronic Acid Mediated Enrichment of CD44 Expressing Glioblastoma Stem Cells in U251MG Xenograft Mouse Model

Arun Vaidyanath; Hafizah Mahmud; Apriliana Cahya Khayrani; Aung Ko Ko Oo; Akimasa Seno; Mami Asakura; Tomonari Kasai; Masaharu Seno

Background: Glioblastoma is one of the most aggressive cancer with high mortality rates and poses several hurdles in the efficient chemotherapeutic intervention. Similar to other cancers, glioma also harbors CSCs, that are self-renewable, multipotent cells, which initiate the cancer incidence, chemotherapeutic resistance and cancer recurrence. The microenvironmental regulation in the brain tumor and metastasis involves the cooperative interaction between HA and CD44. CD44, being a multifaceted transmembrane glycoprotein by itself, or in combination with several other cell surface receptors, has been used as a marker for CSC isolation. Methods: We established both adherent and nonadherent culture of U251MG cells by treating with high molecular weight HA. Further these cells were transplanted subcutaneously in Balb/c mouse for the generation of the xenograft model for the cancer stem cell. The tumor was further characterized for the establishment of the working model for molecular targeting studies of cancer stem cells. Results: Here we showed the enrichment of the CD44 expressing population of glioblastoma cells by induction with hyaluronic acid. The non-adherent culture spheroids of U251MG cells showed up regulation in the CD44 expression along with aberrant activation of principal pluripotency genes OCT3/4, SOX2, KLF4 and Nanog. Using the HA-treated spheroid, we established an experimental xenograft mouse model with high angiogenesis enhanced tumor-initiating capacity while retaining the glioblastoma traits. Conclusion: We characterized a mouse xenograft model of U251MG cells which could be a promising model system to study the molecular targeting approaches against CSCs in glioblastoma.


Cancer Informatics | 2016

Characterization of Gene Expression Patterns among Artificially Developed Cancer Stem Cells Using Spherical Self-Organizing Map.

Akimasa Seno; Tomonari Kasai; Masashi Ikeda; Arun Vaidyanath; Junko Masuda; Akifumi Mizutani; Hiroshi Murakami; Tetsuya Ishikawa; Masaharu Seno

We performed gene expression microarray analysis coupled with spherical self-organizing map (sSOM) for artificially developed cancer stem cells (CSCs). The CSCs were developed from human induced pluripotent stem cells (hiPSCs) with the conditioned media of cancer cell lines, whereas the CSCs were induced from primary cell culture of human cancer tissues with defined factors (OCT3/4, SOX2, and KLF4). These cells commonly expressed human embryonic stem cell (hESC)/hiPSC-specific genes (POU5F1, SOX2, NANOG, LIN28, and SALL4) at a level equivalent to those of control hiPSC 201B7. The sSOM with unsupervised method demonstrated that the CSCs could be divided into three groups based on their culture conditions and original cancer tissues. Furthermore, with supervised method, sSOM nominated TMED9, RNASE1, NGFR, ST3GAL1, TNS4, BTG2, SLC16A3, CD177, CES1, GDF15, STMN2, FAM20A, NPPB, CD99, MYL7, PRSS23, AHNAK, and LOC152573 genes commonly upregulating among the CSCs compared to hiPSC, suggesting the gene signature of the CSCs.


International Journal of Molecular Sciences | 2018

Exogenous Cripto-1 Suppresses Self-Renewal of Cancer Stem Cell Model

Alam; Ryota Takahashi; Said Afify; Aung Ko Ko Oo; Kazuki Kumon; Hend Nawara; Aprilliana Khayrani; Juan Du; Maram Hussein Zahra; Akimasa Seno; David S. Salomon; Masaharu Seno

Cripto-1 is a glycophosphatidylinositol (GPI) anchored signaling protein of epidermal growth factor (EGF)-Cripto-1-FRL1-Cryptic (CFC) family and plays a significant role in the early developmental stages and in the different types of cancer cells, epithelial to mesenchymal transition and tumor angiogenesis. Previously, we have developed cancer stem cells (miPS-LLCcm) from mouse iPSCs by culturing them in the presence of conditioned medium of Lewis Lung Carcinoma (LLC) cells for four weeks. Nodal and Cripto-1 were confirmed to be expressed in miPS-LLCcm cells by quantitative reverse transcription PCR (rt-qPCR) implying that Cr-1 was required in maintaining stemness. To investigate the biological effect of adding exogenous soluble CR-1 to the cancer stem cells, we have prepared a C-terminally truncated soluble form of recombinant human CR-1 protein (rhsfCR-1), in which the GPI anchored moiety was removed by substitution of a stop codon through site-directed mutagenesis. rhsfCR-1 effectively suppressed the proliferation and sphere forming ability of miPS-LLCcm cells in a dose-dependent manner in the range of 0 to 5 µg/mL, due to the suppression of Nodal-Cripto-1/ALK4/Smad2 signaling pathway. Frequency of sphere-forming cells was dropped from 1/40 to 1/69 by rhsfCR-1 at 1 µg/mL. Moreover, rhsfCR-1 in the range of 0 to 1 µg/mL also limited the differentiation of miPS-LLCcm cells into vascular endothelial cells probably due to the suppression of self-renewal, which should reduce the number of cells with stemness property. As demonstrated by a soluble form of exogenous Cripto-1 in this study, the efficient blockade would be an attractive way to study Cripto-1 dependent cancer stem cell properties for therapeutic application.


Experimental and Therapeutic Medicine | 2018

Suppression effect on IFN‑γ of adipose tissue‑derived mesenchymal stem cells isolated from β2‑microglobulin‑deficient mice

Junko Masuda; Eiji Takayama; Tatsuo Ichinohe; Warren Strober; Masako Mizuno‑Kamiya; Tomokatsu Ikawa; Atsushi Kitani; Harumi Kawaki; Ivan J. Fuss; Hiroshi Kawamoto; Akimasa Seno; Arun Vaidyanath; Naoki Umemura; Akifumi Mizutani; Tomonari Kasai; Yasuko Honjo; Ayano Satoh; Hiroshi Murakami; Yoshimoto Katsura; Nobuo Kondoh; Masaharu Seno

Administration of bone marrow-derived mesenchymal stem cells (MSCs) is a possible treatment for graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation and other inflammatory conditions. To address the mechanism of immunosuppression by MSCs, in particular those derived from adipose tissue (AMSCs), AMSCs were isolated from three different mouse strains, and the suppressive capacity of the AMSCs thus obtained to suppress interferon (IFN)-γ generation in mixed lymphocyte reaction cultures serving as an in vitro model of GVHD were assessed. It was revealed that the AMSCs had a potent capacity to suppress IFN-γ production regardless of their strain of origin and that such suppression was not associated with production of interleukin-10. In addition, the results demonstrated that β2-microglobulin (β2m)-deficient AMSCs from β2m-/- mice were also potent suppressor cells, verifying the fact that the mechanism underlying the suppression by AMSCs is independent of major histocompatibility complex (MHC) class I expression or MHC compatibility. As AMSCs appear to have immunosuppressive properties, AMSCs may be a useful source of biological suppressor cells for the control of GVHD in humans.

Collaboration


Dive into the Akimasa Seno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge