Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akinobu Itoh is active.

Publication


Featured researches published by Akinobu Itoh.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis

Gaurav Krishnamurthy; Daniel B. Ennis; Akinobu Itoh; Wolfgang Bothe; Julia C. Swanson; Matts Karlsson; Ellen Kuhl; D. Craig Miller; Neil B. Ingels

We measured leaflet displacements and used inverse finite-element analysis to define, for the first time, the material properties of mitral valve (MV) leaflets in vivo. Sixteen miniature radiopaque markers were sewn to the MV annulus, 16 to the anterior MV leaflet, and 1 on each papillary muscle tip in 17 sheep. Four-dimensional coordinates were obtained from biplane videofluoroscopic marker images (60 frames/s) during three complete cardiac cycles. A finite-element model of the anterior MV leaflet was developed using marker coordinates at the end of isovolumic relaxation (IVR; when the pressure difference across the valve is approximately 0), as the minimum stress reference state. Leaflet displacements were simulated during IVR using measured left ventricular and atrial pressures. The leaflet shear modulus (G(circ-rad)) and elastic moduli in both the commisure-commisure (E(circ)) and radial (E(rad)) directions were obtained using the method of feasible directions to minimize the difference between simulated and measured displacements. Group mean (+/-SD) values (17 animals, 3 heartbeats each, i.e., 51 cardiac cycles) were as follows: G(circ-rad) = 121 +/- 22 N/mm2, E(circ) = 43 +/- 18 N/mm2, and E(rad) = 11 +/- 3 N/mm2 (E(circ) > E(rad), P < 0.01). These values, much greater than those previously reported from in vitro studies, may result from activated neurally controlled contractile tissue within the leaflet that is inactive in excised tissues. This could have important implications, not only to our understanding of mitral valve physiology in the beating heart but for providing additional information to aid the development of more durable tissue-engineered bioprosthetic valves.


Journal of Biomechanics | 2009

Stress-Strain Behavior of Mitral Valve Leaflets in the Beating Ovine Heart

Gaurav Krishnamurthy; Akinobu Itoh; Wolfgang Bothe; Julia C. Swanson; Ellen Kuhl; Matts Karlsson; D. Craig Miller; Neil B. Ingels

Excised anterior mitral leaflets exhibit anisotropic, non-linear material behavior with pre-transitional stiffness ranging from 0.06 to 0.09 N/mm(2) and post-transitional stiffness from 2 to 9 N/mm(2). We used inverse finite element (FE) analysis to test, for the first time, whether the anterior mitral leaflet (AML), in vivo, exhibits similar non-linear behavior during isovolumic relaxation (IVR). Miniature radiopaque markers were sewn to the mitral annulus, AML, and papillary muscles in 8 sheep. Four-dimensional marker coordinates were obtained using biplane videofluoroscopic imaging during three consecutive cardiac cycles. A FE model of the AML was developed using marker coordinates at the end of isovolumic relaxation (when pressure difference across the valve is approximately zero), as the reference state. AML displacements were simulated during IVR using measured left ventricular and atrial pressures. AML elastic moduli in the radial and circumferential directions were obtained for each heartbeat by inverse FEA, minimizing the difference between simulated and measured displacements. Stress-strain curves for each beat were obtained from the FE model at incrementally increasing transmitral pressure intervals during IVR. Linear regression of 24 individual stress-strain curves (8 hearts, 3 beats each) yielded a mean (+/-SD) linear correlation coefficient (r(2)) of 0.994+/-0.003 for the circumferential direction and 0.995+/-0.003 for the radial direction. Thus, unlike isolated leaflets, the AML, in vivo, operates linearly over a physiologic range of pressures in the closed mitral valve.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Active stiffening of mitral valve leaflets in the beating heart.

Akinobu Itoh; Gaurav Krishnamurthy; Julia C. Swanson; Daniel B. Ennis; Wolfgang Bothe; Ellen Kuhl; Matts Karlsson; Lauren R. Davis; D. Craig Miller; Neil B. Ingels

The anterior leaflet of the mitral valve (MV), viewed traditionally as a passive membrane, is shown to be a highly active structure in the beating heart. Two types of leaflet contractile activity are demonstrated: 1) a brief twitch at the beginning of each beat (reflecting contraction of myocytes in the leaflet in communication with and excited by left atrial muscle) that is relaxed by midsystole and whose contractile activity is eliminated with beta-receptor blockade and 2) sustained tone during isovolumic relaxation, insensitive to beta-blockade, but doubled by stimulation of the neurally rich region of aortic-mitral continuity. These findings raise the possibility that these leaflets are neurally controlled tissues, with potentially adaptive capabilities to meet the changing physiological demands on the heart. They also provide a basis for a permanent paradigm shift from one viewing the leaflets as passive flaps to one viewing them as active tissues whose complex function and dysfunction must be taken into account when considering not only therapeutic approaches to MV disease, but even the definitions of MV disease itself.


Circulation | 2008

The Effects of Mitral Regurgitation Alone Are Sufficient for Leaflet Remodeling

Elizabeth H. Stephens; Tom C. Nguyen; Akinobu Itoh; Neil B. Ingels; D. Craig Miller; K. Jane Grande-Allen

Background— Although chronic mitral regurgitation results in adverse left ventricular remodeling, its effect on the mitral valve leaflets per se is unknown. In a chronic ovine model, we tested whether isolated mitral regurgitation alone was sufficient to remodel the anterior mitral leaflet. Methods and Results— Twenty-nine sheep were randomized to either control (CTRL, n=11) or experimental (HOLE, n=18) groups. In HOLE, a 2.8- to 4.8-mm diameter hole was punched in the middle scallop of the posterior mitral leaflet to create “pure” mitral regurgitation. At 12 weeks, the anterior mitral leaflet was analyzed immunohistochemically to assess markers of collagen and elastin synthesis as well as matrix metalloproteinases and proteoglycans. A semiquantitative grading scale for characteristics such as intensity and delineation of stain between layers was used to quantify differences between HOLE and CTRL specimens across the heterogeneous leaflet structure. At 12 weeks, mitral regurgitation grade was greater in HOLE versus CTRL (3.0±0.8 versus 0.4±0.4, P<0.001). In HOLE anterior mitral leaflet, saffron-staining collagen (Movat) decreased, consistent with an increase in matrix metalloproteases throughout the leaflet. Type III collagen expression was increased in the midleaflet and free edge and expression of prolyl-4-hydroxylase (indicating collagen synthesis) was increased in the spongiosa layer. The proteoglycan decorin, also involved in collagen fibrillogenesis, was increased compared with CTRL (all P≤0.05). Conclusions— In HOLE anterior mitral leaflet, the increased expression of proteins related to collagen synthesis and matrix degradation suggests active matrix turnover. These are the first observations showing that regurgitation alone can stimulate mitral leaflet remodeling. Such leaflet remodeling needs to be considered in reparative surgical techniques.


The Journal of Thoracic and Cardiovascular Surgery | 2008

The effect of pure mitral regurgitation on mitral annular geometry and three-dimensional saddle shape

Tom C. Nguyen; Akinobu Itoh; Carl-Johan Carlhäll; Wolfgang Bothe; Tomasz A. Timek; Daniel B. Ennis; Robert A Oakes; David Liang; George T. Daughters; Neil B. Ingels; D. Craig Miller

OBJECTIVE Chronic ischemic mitral regurgitation is associated with mitral annular dilatation in the septal-lateral dimension and flattening of the annular 3-dimensional saddle shape. To examine whether these perturbations are caused by the ischemic insult, mitral regurgitation, or both, we investigated the effects of pure mitral regurgitation (low pressure volume overload) on annular geometry and shape. METHODS Eight radiopaque markers were sutured evenly around the mitral annulus in sheep randomized to control (CTRL, n = 8) or experimental (HOLE, n = 12) groups. In HOLE, a 3.5- to 4.8-mm hole was punched in the posterior leaflet to generate pure mitral regurgitation. Four-dimensional marker coordinates were obtained radiographically 1 and 12 weeks postoperatively. Mitral annular area, annular septal-lateral and commissure-commissure dimensions, and annular height were calculated every 16.7 ms. RESULTS Mitral regurgitation grade was 0.4 +/- 0.4 in CTRL and 3.0 +/- 0.8 in HOLE (P < .001) at 12 weeks. End-diastolic left ventricular volume index was greater in HOLE at both 1 and 12 weeks; end-systolic volume index was larger in HOLE at 12 weeks. Mitral annular area increased in HOLE predominantly in the commissure-commissure dimension, with no difference in annular height between HOLE versus CTRL at 1 or 12 weeks, respectively. CONCLUSION In contrast with annular septal-lateral dilatation and flattening of the annular saddle shape observed with chronic ischemic mitral regurgitation, pure mitral regurgitation was associated with commissure-commissure dimension annular dilatation and no change in annular shape. Thus, infarction is a more important determinant of septal-lateral dilatation and annular shape than mitral regurgitation, which reinforces the need for disease-specific designs of annuloplasty rings.


Journal of Biomechanics | 2009

Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart

Gaurav Krishnamurthy; Akinobu Itoh; Julia C. Swanson; Wolfgang Bothe; Matts Karlsson; Ellen Kuhl; D. Craig Miller; Neil B. Ingels

Left atrial muscle extends into the proximal third of the mitral valve (MV) anterior leaflet and transient tensing of this muscle has been proposed as a mechanism aiding valve closure. If such tensing occurs, regional stiffness in the proximal anterior mitral leaflet will be greater during isovolumic contraction (IVC) than isovolumic relaxation (IVR) and this regional stiffness difference will be selectively abolished by beta-receptor blockade. We tested this hypothesis in the beating ovine heart. Radiopaque markers were sewn around the MV annulus and on the anterior MV leaflet in 10 sheep hearts. Four-dimensional marker coordinates were obtained from biplane videofluoroscopy before (CRTL) and after administration of esmolol (ESML). Heterogeneous finite element models of each anterior leaflet were developed using marker coordinates over matched pressures during IVC and IVR for CRTL and ESML. Leaflet displacements were simulated using measured left ventricular and atrial pressures and a response function was computed as the difference between simulated and measured displacements. Circumferential and radial elastic moduli for ANNULAR, BELLY and EDGE leaflet regions were iteratively varied until the response function reached a minimum. The stiffness values at this minimum were interpreted as the in vivo regional material properties of the anterior leaflet. For all regions and all CTRL beats IVC stiffness was 40-58% greater than IVR stiffness. ESML reduced ANNULAR IVC stiffness to ANNULAR IVR stiffness values. These results strongly implicate transient tensing of leaflet atrial muscle during IVC as the basis of the ANNULAR IVC-IVR stiffness difference.


The Journal of Thoracic and Cardiovascular Surgery | 2009

Mitral annular hinge motion contribution to changes in mitral septal–lateral dimension and annular area

Akinobu Itoh; Daniel B. Ennis; Wolfgang Bothe; Julia C. Swanson; Gaurav Krishnamurthy; Tom C. Nguyen; Neil B. Ingels; D. Craig Miller

OBJECTIVE The mitral annulus is a dynamic, saddle-shaped structure consisting of fibrous and muscular regions. Normal physiologic mechanisms of annular motion are incompletely understood, and more complete characterization is needed to provide rational basis for annuloplasty ring design and to enhance clinical outcomes. METHODS Seventeen sheep had radiopaque markers implanted; 16 around the annulus and 2 on middle anterior and posterior leaflet edges. Four-dimensional marker coordinates were acquired with biplanar videofluoroscopy at 60 Hz. Hinge angle was quantified between fibrous and muscular annular planes, with 0 degrees defined at end diastole, to characterize its contribution to alterations in mitral septal-lateral dimension and 2-dimensional total annular area throughout the cardiac cycle. RESULTS During isovolumic contraction (pre-ejection), hinge angle abruptly increased, reaching maximum (steepest saddle shape, change 18 degrees +/- 13 degrees ) at peak left ventricular pressure. During ejection, hinge angle did not change; it then decreased during early filling (change 2 degrees +/- 2 degrees ). Septal-lateral dimension and total area paralleled hinge angle dynamics and leaflet distance (anterior to posterior marker). Pre-ejection septal-lateral reduction was 13% +/- 7% (3.3 +/- 1.5 mm) from 9% muscular dimension fall and 18 degrees +/- 13 degrees hinge angle increase. CONCLUSIONS Pre-ejection increase in hinge angle contributes substantially to septal-lateral and total area reduction, facilitating leaflet coaptation. Semirigid annuloplasty rings or partial bands may preserve hinge motion, but possible recurrent annular dilatation could result in recurrent mitral regurgitation. Long-term clinical studies are required to determine who might benefit most from preserving intrinsic hinge motion without compromising repair durability.


Circulation-cardiovascular Imaging | 2009

Reduced systolic torsion in chronic "pure" mitral regurgitation

Daniel B. Ennis; Tom C. Nguyen; Akinobu Itoh; Wolfgang Bothe; David Liang; Neil B. Ingels; D. Craig Miller

Background—Global left ventricular (LV) torsion declines with chronic ischemic mitral regurgitation (MR), which may accelerate the LV remodeling spiral toward global cardiomyopathy; however, it has not been definitively established whether this torsional decline is attributable to the infarct, the MR, or their combined effect. We tested the hypothesis that chronic “pure” MR alone reduces global LV torsion. Methods and Results—Chronic “pure” MR was created in 13 sheep by surgically punching a 3.5- to 4.8-mm hole (HOLE) in the mitral valve posterior leaflet. Nine control (CNTL) sheep were operated on concurrently. At 1 (WK-01) and 12 weeks (WK-12) postoperatively, the 4D motion of implanted radiopaque markers was used to calculate global LV torsion. MR-grade in HOLE was greater than CNTL at WK-01 and WK-12 (2.5±1.1 versus 0.6±0.5, P<0.001 at WK-12). HOLE LV mass index was larger at WK-12 compared with CNTL (195±14 versus 170±17 g/m2, P<0.01), indicating LV remodeling. Global LV systolic torsion decreased in HOLE from WK-01 to WK-12 (4.1±2.8° versus 1.7±1.7°, P<0.01), but did not change in CNTL (5.5±1.8° versus 4.2±2.7°, P=NS). Global LV torsion was lower in HOLE relative to CNTL at WK-12 (P<0.05) but not at WK-01 (P=NS). Conclusions—Twelve weeks of chronic “pure” MR resulting in mild global LV remodeling is associated with significantly increased LV mass index and reduced global LV systolic torsion, but no other significant changes in hemodynamics. MR alone is a major component of torsional deterioration in “pure” MR and may be an important factor in chronic ischemic mitral regurgitation.


Circulation | 2008

Alterations in transmural myocardial strain: an early marker of left ventricular dysfunction in mitral regurgitation?

Carl-Johan Carlhäll; Tom C. Nguyen; Akinobu Itoh; Daniel B. Ennis; Wolfgang Bothe; David Liang; Neil B. Ingels; D. Craig Miller

Background‐ In asymptomatic patients with severe isolated mitral regurgitation (MR), identifying the onset of early left ventricular (LV) dysfunction can guide the timing of surgical intervention. We hypothesized that changes in LV transmural myocardial strain represent an early marker of LV dysfunction in an ovine chronic MR model. Methods and Results‐ Sheep were randomized to control (CTRL, n=8) or experimental (EXP, n=12) groups. In EXP, a 3.5- or 4.8-mm hole was created in the posterior mitral leaflet to generate “pure” MR. Transmural beadsets were inserted into the lateral and anterior LV wall to radiographically measure 3-dimensional transmural strains during systole and diastolic filling, at 1 and 12 weeks postoperatively. MR grade was higher in EXP than CTRL at 1 and 12 weeks (3.0 [2–4] versus 0.5 [0–2]; 3.0 [1–4] versus 0.5 [0-1], respectively, both P<0.001). At 12 weeks, LV mass index was greater in EXP than CTRL (201±18 versus 173±17 g/m2; P<0.01). LVEDVI increased in EXP from 1 to 12 weeks (P=0.015). Between the 1 and 12 week values, the change in BNP (−4.5±4.4 versus −3.0±3.6 pmol/L), PRSW (9±13 versus 23±18 mm Hg), tau (−3±11 versus −4±7 ms), and systolic strains was similar between EXP and CTRL. The changes in longitudinal diastolic filling strains between 1 and 12 weeks, however, were greater in EXP versus CTRL in the subendocardium (lateral: −0.08±0.05 versus 0.02±0.14; anterior: −0.10±0.05 versus −0.02±0.07, both P<0.01). Conclusions‐ Twelve weeks of ovine “pure” MR caused LV remodeling with early changes in LV function detected by alterations in transmural myocardial strain, but not by changes in BNP, PRSW, or tau.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Transient stiffening of mitral valve leaflets in the beating heart

Gaurav Krishnamurthy; Akinobu Itoh; Julia C. Swanson; D. Craig Miller; Neil B. Ingels

Anterior mitral leaflet stiffness during isovolumic contraction (IVC) is much greater than that during isovolumic relaxation (IVR). We have hypothesized that this stiffening is due to transient early systolic force development in the slip of cardiac myocytes in the annular third of the anterior leaflet. Because the atrium is excited before IVC and leaflet myocytes contract for < or = 250 ms, this hypothesis predicts that IVC leaflet stiffness will drop to near-IVR values in the latter half of ventricular systole. We tested this prediction using radiopaque markers and inverse finite element analysis of 30 beats in 10 ovine hearts. For each beat, circumferential (E(c)) and radial (E(r)) stiffness was determined during IVC (Deltat(1)), end IVC to midsystole (Deltat(2)), midsystole to IVR onset (Deltat(3)), and IVR (Deltat(4)). Group mean stiffness (E(c) + or - SD; E(r) + or - SD; in N/mm(2)) during Deltat(1) (44 + or - 16; 15 + or - 4) was 1.6-1.7 times that during Deltat(4) (28 + or - 11; 9 + or - 3); Deltat(2) stiffness (39 + or - 15; 14 + or - 4) was 1.3-1.5 times that of Deltat(4), but Deltat(3) stiffness (32 + or - 12; 11 + or - 3) was only 1.1-1.2 times that of Deltat(4). The stiffness drop during Deltat(3) supports the hypothesis that anterior leaflet stiffening during IVC arises primarily from transient force development in leaflet cardiac myocytes, with stiffness reduced as this leaflet muscle relaxes in the latter half of ventricular systole.

Collaboration


Dive into the Akinobu Itoh's collaboration.

Top Co-Authors

Avatar

Neil B. Ingels

Palo Alto Medical Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom C. Nguyen

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge