Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akio Mori is active.

Publication


Featured researches published by Akio Mori.


Science | 2007

Genome sequence of Aedes aegypti, a major arbovirus vector

Vishvanath Nene; Jennifer R. Wortman; Daniel John Lawson; Brian J. Haas; Chinnappa D. Kodira; Zhijian Jake Tu; Brendan J. Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; Evgeny M. Zdobnov; Neil F. Lobo; Kathryn S. Campbell; Susan E. Brown; Maria F. Bonaldo; Jingsong Zhu; Steven P. Sinkins; David G. Hogenkamp; Paolo Amedeo; Peter Arensburger; Peter W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; Monique R. Coy; Jonathan Crabtree; Matt Crawford

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ∼1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ∼4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of ∼2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.


Science | 2010

Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics.

Peter Arensburger; Karine Megy; Robert M. Waterhouse; Jenica Abrudan; Paolo Amedeo; Beatriz García Antelo; Lyric C. Bartholomay; Shelby Bidwell; Elisabet Caler; Francisco Camara; Corey L. Campbell; Kathryn S. Campbell; Claudio Casola; Marta T. Castro; Ishwar Chandramouliswaran; Sinéad B. Chapman; Scott Christley; Javier Costas; Eric Eisenstadt; Cédric Feschotte; Claire M. Fraser-Liggett; Roderic Guigó; Brian J. Haas; Martin Hammond; Bill S. Hansson; Janet Hemingway; Sharon R. Hill; Clint Howarth; Rickard Ignell; Ryan C. Kennedy

Closing the Vector Circle The genome sequence of Culex quinquefasciatus offers a representative of the third major genus of mosquito disease vectors for comparative analysis. In a major international effort, Arensburger et al. (p. 86) uncovered divergences in the C. quinquefasciatus genome compared with the representatives of the other two genera Aedes aegypti and Anopheles gambiae. The main difference noted is the expansion of numbers of genes, particularly for immunity, oxidoreductive functions, and digestive enzymes, which may reflect specific aspects of the Culex life cycle. Bartholomay et al. (p. 88) explored infection-response genes in Culex in more depth and uncovered 500 immune response-related genes, similar to the numbers seen in Aedes, but fewer than seen in Anopheles or the fruit fly Drosophila melanogaster. The higher numbers of genes were attributed partly to expansions in those encoding serpins, C-type lectins, and fibrinogen-related proteins, consistent with greater immune surveillance and associated signaling needed to monitor the dangers of breeding in polluted, urbanized environments. Transcriptome analysis confirmed that inoculation with unfamiliar bacteria prompted strong immune responses in Culex. The worm and virus pathogens that the mosquitoes transmit naturally provoked little immune activation, however, suggesting that tolerance has evolved to any damage caused by replication of the pathogens in the insects. The genome of a third mosquito species reveals distinctions related to vector capacities and habitat preferences. Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.


Insect Molecular Biology | 2001

Comparative linkage map development and identification of an autosomal locus for insensitive acetylcholinesterase-mediated insecticide resistance in Culex tritaeniorhynchus

Akio Mori; Takashi Tomita; O. Hidoh; Yoshiaki Kono; David W. Severson

A comparative linkage map for Culex tritaeniorhynchus was constructed based on restriction fragment length polymorphism markers using cDNAs from Aedes aegypti. Linear orders of marker loci in Cx. tritaeniorhynchus were identical to Culex pipiens wherein chromosomes 2 and 3 reflect whole‐arm rearrangements compared to A. aegypti. However, the sex determination locus in Cx. tritaeniorhynchus maps to chromosome 3, in contrast to Cx. pipiens and Ae. aegypti where it is located on chromosome 1. Our results indicate that insensitive acetylcholinesterase (AChE)‐mediated organophosphate resistance is controlled by a single major gene (AChER) on chromosome 2, while the AChE structural gene (Ace) is located on chromosome 1. No evidence for a second Ace gene was observed, even under very low stringency hybridization conditions.


BMC Genomics | 2009

Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti.

Diane D. Lovin; Katie O Washington; Becky deBruyn; Akio Mori; Sarah R Epstein; Brent W. Harker; Thomas G. Streit; David W. Severson

BackgroundMicrosatellite markers have proven useful in genetic studies in many organisms, yet microsatellite-based studies of the dengue and yellow fever vector mosquito Aedes aegypti have been limited by the number of assayable and polymorphic loci available, despite multiple independent efforts to identify them. Here we present strategies for efficient identification and development of useful microsatellites with broad coverage across the Aedes aegypti genome, development of multiplex-ready PCR groups of microsatellite loci, and validation of their utility for population analysis with field collections from Haiti.ResultsFrom 79 putative microsatellite loci representing 31 motifs identified in 42 whole genome sequence supercontig assemblies in the Aedes aegypti genome, 33 microsatellites providing genome-wide coverage amplified as single copy sequences in four lab strains, with a range of 2-6 alleles per locus. The tri-nucleotide motifs represented the majority (51%) of the polymorphic single copy loci, and none of these was located within a putative open reading frame. Seven groups of 4-5 microsatellite loci each were developed for multiplex-ready PCR. Four multiplex-ready groups were used to investigate population genetics of Aedes aegypti populations sampled in Haiti. Of the 23 loci represented in these groups, 20 were polymorphic with a range of 3-24 alleles per locus (mean = 8.75). Allelic polymorphic information content varied from 0.171 to 0.867 (mean = 0.545). Most loci met Hardy-Weinberg expectations across populations and pairwise FST comparisons identified significant genetic differentiation between some populations. No evidence for genetic isolation by distance was observed.ConclusionDespite limited success in previous reports, we demonstrate that the Aedes aegypti genome is well-populated with single copy, polymorphic microsatellite loci that can be uncovered using the strategy developed here for rapid and efficient screening of genome supercontig assemblies. These loci are suitable for genetic and population studies using multiplex-PCR.


CSH Protocols | 2010

Aedes aegypti: An Emerging Model for Vector Mosquito Development

Anthony Clemons; Morgan Haugen; Ellen Flannery; Michael Tomchaney; Kristopher Kast; Caitlin Jacowski; Christy Le; Akio Mori; Wendy Simanton Holland; Joseph Sarro; David W. Severson; Molly Duman-Scheel

Blood-feeding mosquitoes, including the dengue and yellow fever vector Aedes aegypti, transmit many of the worlds deadliest diseases. Such diseases have resurged in developing countries and pose clear threats for epidemic outbreaks in developed countries. Recent mosquito genome projects have stimulated interest in the potential for arthropod-borne disease control by genetic manipulation of vector insects. Targets of particular interest include genes that regulate development. However, although the Ae. aegypti genome project uncovered homologs of many known developmental regulatory genes, little is known of the genetic regulation of development in Ae. aegypti or other vector mosquitoes. This article provides an overview of the background, husbandry, and potential uses of Ae. aegypti as a model species. Methods for culturing, collecting and fixing developing tissues, analyzing gene and protein expression, and knocking down genes are permitting detailed analyses of the functions of developmental regulatory genes and the selective inhibition of such genes during Ae. aegypti development. This methodology, much of which is applicable to other mosquito species, is useful to both the comparative development and vector research communities.


CSH Protocols | 2010

Culturing and egg collection of Aedes aegypti.

Anthony Clemons; Akio Mori; Morgan Haugen; David W. Severson; Molly Duman-Scheel

Blood-feeding mosquitoes, including the dengue and yellow fever vector Aedes aegypti, transmit many of the worlds deadliest diseases. Such diseases have resurged in developing countries and pose clear threats for epidemic outbreaks in developed countries. Recent mosquito genome projects have stimulated interest in the potential for arthropod-borne disease control by genetic manipulation of vector insects, and genes that regulate development are of particular interest. This protocol describes methods for culturing Ae. aegypti and includes a procedure for egg collection that can be used in conjunction with fixation, immunohistochemistry, and in situ protocols.


Journal of Medical Entomology | 2004

Reinvestigation of an Endogenous Meiotic Drive System in the Mosquito, Aedes aegypti (Diptera: Culicidae)

Akio Mori; Dave D. Chadee; Douglas H. Graham; David W. Severson

Abstract We have initiated efforts to determine the molecular basis for the MD meiotic drive system in the mosquito, Aedes aegypti. The effect of the MD gene is a highly male-biased sex ratio, but varies depending on the frequency and sensitivity of a susceptible responder ms allele. The MD system has potential as a mechanism for driving trangenes for pathogen resistance into natural Ae. aegypti populations. Because all previously existing laboratory strains carrying the MD gene have been lost, we have selected for a new strain, T37, that carries a strong driver. Matings between T37 males and drive-susceptible ms females result in progeny with highly biased sex ratios, wherein only ≈14.7% females are produced. We discuss the potential for identifying MD candidate genes based on comparisons with the well-described Drosophila melanogaster segregation distorter (SD) meiotic drive system and considerations for release of transgenic Ae. aegypti into natural populations where MD and insensitive mi alleles are likely segregating.


Functional & Integrative Genomics | 2014

Influence of mosquito genotype on transcriptional response to dengue virus infection

Susanta K. Behura; Consuelo Gomez-Machorro; Becky deBruyn; Diane D. Lovin; Brent W. Harker; Jeanne Romero-Severson; Akio Mori; David W. Severson

The mosquito Aedes aegypti is the principal vector that transmits dengue virus (DENV) to humans. The primary factors that trigger a susceptible or refractory interaction of A. aegypti with DENV are not well understood. In this study, our aim is to characterize the influence of vector genotype on differential gene expression of susceptible vs. refractory A. aegypti strains to DENV infection. To accomplish that, we identified differential expression of a set of complementary DNAs (cDNAs; nu2009=u20099,504) of the D2S3 (susceptible) and Moyo-D (refractory) strains of A. aegypti to DENV serotype 2 (JAM1409) and compared these results to the differential expression of cDNAs in a different susceptible vector genotype (Moyo-S) relative to the same refractory genotype (Moyo-D) identified from our previous study. We observed that, although the number of differentially expressed transcripts (DETs) was similar in both the studies, about ~95xa0% of the DETs were distinct between Moyo-D/D2S3 vs. Moyo-D/Moyo-S. This suggested that A. aegypti response, to infection of a given genotype of dengue, is largely dependent upon the vector genotype. However, we observed a set of common DETs among the vector strains that were associated with predicted functions such as endocytosis, regulation of autophagy, peroxisome, and lipid metabolism that may be relatively universal in conferring mosquito response to DENV infection.


BMC Research Notes | 2011

Enhancing genome investigations in the mosquito Culex quinquefasciatus via BAC library construction and characterization

Paul V. Hickner; Becky deBruyn; Diane D. Lovin; Akio Mori; Christopher A. Saski; David W. Severson

BackgroundCulex quinquefasciatus (Say) is a major species in the Culex pipiens complex and an important vector for several human pathogens including West Nile virus and parasitic filarial nematodes causing lymphatic filariasis. It is common throughout tropical and subtropical regions and is among the most geographically widespread mosquito species. Although the complete genome sequence is now available, additional genomic tools are needed to improve the sequence assembly.FindingsWe constructed a bacterial artificial chromosome (BAC) library using the pIndigoBAC536 vector and Hin dIII partially digested DNA isolated from Cx. quinquefasciatus pupae, Johannesburg strain (NDJ). Insert size was estimated by Not I digestion and pulsed-field gel electrophoresis of 82 randomly selected clones. To estimate genome coverage, each 384-well plate was pooled for screening with 29 simple sequence repeat (SSR) and five gene markers. The NDJ library consists of 55,296 clones arrayed in 144 384-well microplates. Fragment insert size ranged from 50 to 190 kb in length (mean = 106 kb). Based on a mean insert size of 106 kb and a genome size of 579 Mbp, the BAC library provides ~10.1-fold coverage of the Cx. quinquefasciatus genome. PCR screening of BAC DNA plate pools for SSR loci from the genetic linkage map and for four genes associated with reproductive diapause in Culex pipiens resulted in a mean of 9.0 positive plate pools per locus.ConclusionThe NDJ library represents an excellent resource for genome assembly enhancement and characterization in Culex pipiens complex mosquitoes.


Biochemical and Biophysical Research Communications | 2004

An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus

Takeshi Nabeshima; Akio Mori; Toshinori Kozaki; Yoichi Iwata; Osamu Hidoh; Shizuko Harada; Shinji Kasai; David W. Severson; Yoshiaki Kono; Takashi Tomita

Collaboration


Dive into the Akio Mori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Becky deBruyn

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Diane D. Lovin

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Neil F. Lobo

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shelby Bidwell

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge