Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akira Miyatake is active.

Publication


Featured researches published by Akira Miyatake.


Hypertension | 2005

Aldosterone Stimulates Collagen Gene Expression and Synthesis Via Activation of ERK1/2 in Rat Renal Fibroblasts

Yukiko Nagai; Kayoko Miyata; Guang-Ping Sun; Matlubur Rahman; Shoji Kimura; Akira Miyatake; Hideyasu Kiyomoto; Masakazu Kohno; Youichi Abe; Masanori Yoshizumi; Akira Nishiyama

Recently, we demonstrated that in rats treated chronically with aldosterone and salt, severe tubulointerstitial fibrosis is associated with the activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERK1/2). Here, we investigated whether aldosterone stimulates collagen synthesis via ERK1/2-dependent pathways in cultured rat renal fibroblasts. Gene expression of mineralocorticoid receptor (MR) and types I, II, III, and IV collagen was measured by real-time polymerase chain reaction (PCR). MR protein expression and ERK1/2 activity were evaluated by Western blotting analysis with anti-MR and anti–phospho-ERK1/2 antibodies, respectively. Collagen synthesis was determined by [3H]-proline incorporation. Significant levels of MR mRNA and protein expression were observed in rat renal fibroblasts. Treatment with aldosterone (0.1 to 10 nmol/L) increased ERK1/2 phosphorylation in a concentration-dependent manner with a peak at 5 minutes. Aldosterone (10 nmol/L) also increased the mRNA levels of types I, III, and IV collagen at 36 hours but had no effect on the type II collagen mRNA level. [3H]-proline incorporation was significantly increased by aldosterone in both the medium and cell layer at 48 hours. Aldosterone-induced ERK1/2 phosphorylation was markedly attenuated by pretreatment with eplerenone (10 &mgr;mol/L), a selective MR antagonist, or PD98059 (10 &mgr;mol/L), a specific inhibitor of MAPK kinase/ERK kinase, which is the upstream activator of ERK1/2. In addition, both eplerenone and PD98059 prevented the aldosterone-induced increases in types I, III, and IV collagen mRNA and [3H]-proline incorporation. These results suggest that aldosterone stimulates collagen gene expression and synthesis via MR-mediated ERK1/2 activation in renal fibroblasts, which may contribute to the progression of aldosterone-induced tubulointerstitial fibrosis.


Journal of The American Society of Nephrology | 2005

Temporary angiotensin II blockade at the prediabetic stage attenuates the development of renal injury in type 2 diabetic rats.

Yukiko Nagai; Li Yao; Hiroyuki Kobori; Kayoko Miyata; Yuri Ozawa; Akira Miyatake; Tokihito Yukimura; Takatomi Shokoji; Shoji Kimura; Hideyasu Kiyomoto; Masakazu Kohno; Youichi Abe; Akira Nishiyama

Whether temporary angiotensin II (AngII) blockade at the prediabetic stage attenuates renal injury in type 2 diabetic OLETF rats later in life was investigated. OLETF rats were treated with an AT(1) receptor antagonist (olmesartan, 0.01% in food), angiotensin-converting enzyme inhibitor (temocapril, 0.01% in food), a combination of the two, or hydralazine (25 mg/kg per d) at the prediabetic stage (4 to 11 wk of age) and then monitored without further treatment until 50 wk of age. At 11 wk of age, blood glucose levels and urinary protein excretion (U(protein)V) were similar between OLETF and control LETO rats. However, OLETF rats showed higher kidney AngII contents and type IV collagen mRNA expression than LETO rats at this age. These decreased with olmesartan, temocapril, and a combination of these but not with hydralazine. At 50 wk of age, diabetic OLETF rats showed higher BP, U(protein)V, and intrarenal AngII levels than LETO rats. Temporary AngII blockade did not affect glucose metabolism or the development of hypertension in OLETF rats but significantly suppressed proteinuria and ameliorated glomerular injury. However, no parameters were affected by temporary hydralazine treatment. The present study demonstrated that intrarenal AngII and type IV collagen expression are already augmented long before diabetes becomes apparent in OLETF rats. Furthermore, temporary AngII blockade at the prediabetic stage attenuates the progression of renal injury in these animals. These data suggest that early AngII blockade could be an effective strategy for preventing the development of type 2 diabetic renal injury later in life.


Circulation Research | 2000

Relation Between Renal Interstitial ATP Concentrations and Autoregulation-Mediated Changes in Renal Vascular Resistance

Akira Nishiyama; Dewan S. A. Majid; Khandaker A. Taher; Akira Miyatake; L. Gabriel Navar

The present study was performed to examine the hypothesis that autoregulation-related changes in renal vascular resistance (RVR) are mediated by extracellular ATP. By use of a microdialysis method, renal interstitial concentrations of ATP and adenosine were measured at different renal arterial pressures (RAPs) within the autoregulatory range in anesthetized dogs (n=12). RAP was reduced in steps from the ambient pressure (131+/-4 mm Hg) to 105+/-3 mm Hg (step 1) and 80+/-2 mm Hg (step 2). Renal blood flow and glomerular filtration rate exhibited efficient autoregulation in response to these changes in RAP. RVR decreased by 22+/-2% in step 1 (P<0.01) and 38+/-3% in step 2 (P<0.01). The control renal interstitial concentration of ATP was 6.51+/-0.71 nmol/L and decreased to 4. 51+/-0.55 nmol/L in step 1 (P<0.01) and 2.77+/-0.47 nmol/L in step 2 (P<0.01). In contrast, the adenosine concentrations (117+/-6 nmol/L) were not altered significantly. Changes in ATP levels were highly correlated with changes in RVR (r=0.88, P<0.0001). Further studies demonstrated that stimulation of the tubuloglomerular feedback (TGF) mechanism by increasing distal volume delivery elicited with acetazolamide also led to increases in renal interstitial ATP concentrations, whereas furosemide, which is known to block TGF responses, reduced renal interstitial fluid ATP concentrations. The data demonstrate a positive relation between renal interstitial fluid ATP concentrations and both autoregulation- and TGF-dependent changes in RVR and thus support the hypothesis that changes in extracellular ATP contribute to the RVR adjustments responsible for the mechanism of renal autoregulation.


Journal of The American Society of Nephrology | 2004

The SOD mimetic tempol ameliorates glomerular injury and reduces mitogen-activated protein kinase activity in Dahl salt-sensitive rats.

Akira Nishiyama; Masanori Yoshizumi; Hirofumi Hitomi; Shoji Kagami; Shuji Kondo; Akira Miyatake; Megumu Fukunaga; Toshiaki Tamaki; Hideyasu Kiyomoto; Masakazu Kohno; Takatomi Shokoji; Shoji Kimura; Youichi Abe

It was shown recently that renal injury in Dahl salt-sensitive (DS) hypertensive rats is accompanied by mitogen-activated protein kinase (MAPK) activation. The present study was conducted to elucidate the contribution of reactive oxygen species to MAPK activities and renal injury in DS rats. DS rats were maintained on high salt (H; 8.0% NaCl; n = 7) or low salt (L; 0.3% NaCl; n = 6) diets; H + a superoxide dismutase mimetic, tempol (3 mmol/L in drinking water; n = 8); or H + hydralazine (0.5 mmol/L in drinking water; n = 8) for 4 wk. Mean BP (MBP) in DS/H and DS/L rats was 185 +/- 7 and 113 +/- 3 mmHg, respectively. DS/H rats showed a higher ratio of urinary protein excretion and creatinine (U(protein)V/U(cr)V; 20.3 +/- 1.1) and a higher cortical collagen content (22 +/- 1 micro g/mg) than in DS/L rats (2.4 +/- 0.1 and 13 +/- 1 micro g/mg, respectively). The expression of p22-phox and Nox-1, essential components of NAD(P)H oxidase, in renal cortical tissue was approximately threefold higher in DS/H rats than in DS/L rats. Increased activities of renal cortical MAPK, including extracellular signal-regulated kinases (ERK) 1/ERK2 and c-Jun NH(2)-terminal kinases (JNK) were also observed in DS/H rats by 7.0 +/- 0.7- and 4.3 +/- 0.2-fold, respectively. Tempol treatment significantly decreased MBP (128 +/- 3 mmHg), U(protein)V/U(cr)V (4.8 +/- 0.4), and cortical collagen content (14 +/- 1 micro g/mg) and normalized ERK1/ERK2 and JNK activities in DS/H rats. Histologically, tempol markedly ameliorated progressive sclerotic and proliferative glomerular changes in DS/H rats. Hydralazine-treated DS/H rats showed similar MBP (127 +/- 5 mmHg) to tempol-treated DS/H rats. Hydralazine also decreased U(protein)V/U(cr)V (16.2 +/- 1.5) and cortical collagen content (19 +/- 1 micro g/mg) in DS/H rats. However, these values were significantly higher than those of tempol-treated rats. Furthermore, although hydralazine significantly reduced JNK activity (-56 +/- 3%), ERK1/ERK2 activities were unaffected. These data suggest that reactive oxygen species, generated by NAD(P)H oxidase, contribute to the progression of renal injury through ERK1/ERK2 activation in DS/H hypertensive rats.


Hypertension | 2001

Renal Interstitial ATP Responses to Changes in Arterial Pressure During Alterations in Tubuloglomerular Feedback Activity

Akira Nishiyama; Dewan S. A. Majid; Matthew Walker; Akira Miyatake; L. Gabriel Navar

We recently demonstrated a direct relationship between autoregulation-related changes in renal vascular resistance (RVR) and renal interstitial ATP concentrations. To assess the possible role for extracellular ATP in the regulation of tubuloglomerular feedback (TGF)-mediated autoregulatory adjustments in RVR, renal interstitial ATP concentrations were measured with microdialysis probes in anesthetized dogs at different renal arterial pressures (RAPs) within the autoregulatory range during augmented and diminished activity of the TGF mechanism. Stepwise reductions in RAP from ambient pressure (129±3 mm Hg) to 102±2 mm Hg (step 1) and 75±1 mm Hg (step 2) resulted in significant decreases in ATP concentrations from 9.0±0.8 to 6.3±0.6 nmol/L in step 1 and to 4.2±0.5 nmol/L in step 2. Changes in RVR were highly correlated with changes in ATP concentrations (r =0.86, P <0.001, n=12). Acetazolamide (100 &mgr;g · kg−1 · min−1, n=6), which increases solute delivery to the macula densa, thus augmenting TGF activity, significantly decreased renal blood flow (RBF) by −16±2% and glomerular filtration rate (GFR) by −22±4% and increased ATP concentrations from 8.4±0.7 to 15.5±1.4 nmol/L. Although basal RBF and GFR levels were reduced by the acetazolamide infusion, autoregulation efficiency was maintained, and interstitial ATP concentrations were significantly decreased in response to reductions in RAP by −36±4% in step 1 and by −54±2% in step 2. The relationship between changes in RVR and interstitial ATP concentrations was preserved during acetazolamide treatment (r =0.80, P <0.01). Inhibition of the TGF mechanism by furosemide significantly increased RBF by 33±6% and GFR by 13±2% and decreased ATP concentrations from 8.9±1.4 to 5.0±0.8 nmol/L (n=6). Furosemide caused marked impairment of RBF and GFR autoregulatory efficiency (by −14±3% and −11±3% in step 1 and by −26±2% and −18±4% in step 2, respectively). In the furosemide-treated kidneys, interstitial ATP levels remained low and were not altered during reductions in RAP (4.7±0.7 nmol/L in step 1 and 4.7±0.8 nmol/L in step 2), and changes in RVR did not exhibit a correlation with changes in ATP concentrations (r =0.22, P =0.30). These data support the hypothesis that extracellular ATP contributes to autoregulatory adjustments in RVR that are mediated by changes in activity of the TGF mechanism.


Journal of Cardiovascular Pharmacology | 2001

Pioglitazone improves left ventricular diastolic function and decreases collagen accumulation in prediabetic stage of a type II diabetic rat.

Teppei Tsuji; Katsufumi Mizushige; Takahisa Noma; Kazushi Murakami; Koji Ohmori; Akira Miyatake; Masakazu Kohno

This study investigated the effect of pioglitazone, an insulin sensitizer, on metabolic abnormalities and oxidative stress as a cause of myocardial collagen accumulation in prediabetic rat hearts. Twenty male diabetic rats and 9 male nondiabetic age-matched rats were used. The diabetic rats were divided into two groups: diabetic treated and untreated. Pioglitazone was mixed in rat chow fed to the diabetic treated group (0.01%). Treatment duration was 5 weeks. At baseline (15 weeks) and 20 weeks of age, blood glucose, lipid, insulin, and plasma malondialdehyde-thiobarbituric acid (MDA) levels were measured and Doppler echocardiography was tracked. At 20 weeks of age, left ventricular collagen content was studied. Blood glucose, plasma insulin, and triglyceride levels in the diabetic treated group were significantly lower than those in the untreated diabetic group. Deceleration time (ms) of early diastolic inflow in the treated diabetic group decreased significantly compared with the untreated diabetic group (65 ± 8 vs. 77 ± 8, p < 0.01). Ratio of left ventricular weight to body weight (mg/g) and ratio of left ventricular collagen content to dry weight (mg/100 mg) were decreased in the treated diabetic group (1.5 ± 0.1, 1.3 ± 0.3) compared with the untreated diabetic group (1.7 ± 0.2, p < 0.01; 1.7 ± 0.3, p < 0.05). Plasma MDA concentration (nmol/ml) significantly decreased (2.9 ± 0.3 at baseline to 2.3 ± 0.3 at 20 weeks, p = 0.001) in the treated diabetic group, and was lower than that in the untreated diabetic group (3.2 ± 0.7 at 20 weeks, p < 0.05). Pioglitazone improved glucose and lipid metabolism and reduced oxidative stress in the left ventricle, which decreased left ventricular collagen accumulation and improved left ventricular diastolic function of prediabetic rat hearts.


Journal of Hypertension | 2006

Contribution of reactive oxygen species to the pathogenesis of left ventricular failure in Dahl salt-sensitive hypertensive rats: effects of angiotensin II blockade.

Peng Guo; Akira Nishiyama; Matlubur Rahman; Yukiko Nagai; Takahisa Noma; Tsunetatsu Namba; Makoto Ishizawa; Kazushi Murakami; Akira Miyatake; Shoji Kimura; Katsufumi Mizushige; Youichi Abe; Koji Ohmori; Masakazu Kohno

Objective We investigated the contribution of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) generation to the pathogenesis of diastolic heart failure (DHF) in Dahl salt-sensitive (DS) hypertensive rats, with the aim of testing our hypothesis that the cardioprotective effects of angiotensin II (Ang II) blockade are provided by the suppression of this pathway. Methods DS rats were maintained on high (H: 8.0% NaCl) or low (L: 0.3% NaCl) salt diets from age 7 to 17 weeks. DS/H rats were also treated with candesartan cilexetil (10 mg/kg per day, orally) or a superoxide dismutase mimetic, tempol (3 mmol/l in drinking water) from age 7 to 17 weeks. Results DS/H rats represented hypertension, left ventricular (LV) relaxation abnormality and myocardial stiffening with preserved systolic heart function. As compared with DS/L rats, DS/H rats showed higher levels of transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), p22phox and gp91phox mRNA expression, NADPH oxidase activity and thiobarbituric acid-reactive substance (TBARS) contents in LV tissues. Gene expression of uncoupling protein-2 (UCP-2), an inner mitochondrial membrane proton transporter, was also 2.8 ± 0.5-fold higher. In DS/H rats, treatment with candesartan did not alter blood pressure, but resulted in a marked improvement of the hemodynamic deterioration; these therapeutic effects were accompanied by decreases in myocardial NADPH oxidase activity, TBARS contents and the expression of TGF-β, CTGF, p22phox, gp91phox and UCP-2. Similar therapeutic effects were provided by treatment with tempol in DS/H rats. Conclusions Our data suggest that NADPH oxidase-mediated ROS production contributes to the pathogenesis of DHF in DS hypertensive rats, and that the cardioprotective effects of AngII blockade are, at least partially, mediated through the suppression of this pathway.


Hypertension | 2004

Effects of local administrations of tempol and diethyldithio-carbamic on peripheral nerve activity.

Takatomi Shokoji; Yoshihide Fujisawa; Shoji Kimura; Matlubur Rahman; Hideyasu Kiyomoto; Keisuke Matsubara; Kumiko Moriwaki; Yasuharu Aki; Akira Miyatake; Masakazu Kohno; Youichi Abe; Akira Nishiyama

We have recently shown that systemic administration of a superoxide dismutase mimetic, tempol, resulted in decreases in mean arterial pressure and heart rate along with a reduction in renal sympathetic nerve activity (RSNA). It has also been shown that these parameters are significantly increased by systemic administration of a superoxide dismutase inhibitor, diethyldithio-carbamic (DETC), indicating a potential role of reactive oxygen species in the regulation of RSNA. In this study, we examined the effects of local administrations of 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) and DETC on RSNA in anesthetized rats. Either tempol or DETC was directly administered onto the renal sympathetic nerves located between the electrode and ganglion. Local application of tempol (10 μL, 0.17 to 1.7 mol/L, n=6) resulted in dose-dependent decreases in integrated RSNA (by −81±6% at 1.7 mol/L) without alterations in mean arterial pressure and heart rate. In contrast, DETC (10 μL, 0.17 to 1.7 mol/L, n=6) increased RSNA dose-dependently. The responses of RSNA to tempol and DETC were significantly greater in spontaneously hypertensive rats than in normotensive rats (n=6, respectively). Local application of sodium nitroprusside (1 mmol/L) or NG-nitro-L-arginine methyl ester (0.11 mol/L) altered neither basal RSNA nor tempol-induced reductions in RSNA (n=6 and 5, respectively). A voltage-gated potassium channel blocker, 4-aminopyridine (0.1 mol/L), significantly decreased basal RSNA (by −81±1%) and completely prevented DETC-induced increases in RSNA (n=5). These results suggest that reactive oxygen species play a role in the regulation of peripheral sympathetic nerve activity, and that at least part of this mechanism is mediated through voltage-gated potassium channels.


Hypertension Research | 2006

Augmentation of Intrarenal Angiotensin II Levels in Uninephrectomized Aldosterone/Salt-Treated Hypertensive Rats; Renoprotective Effects of an Ultrahigh Dose of Olmesartan

Yu-Yan Fan; Ryoko Baba; Yukiko Nagai; Akira Miyatake; Naohisa Hosomi; Shoji Kimura; Guang-Ping Sun; Masakazu Kohno; Mamoru Fujita; Youichi Abe; Akira Nishiyama

Recent studies have suggested that aldosterone plays a role in the pathogenesis of renal injury. In this study, we investigated whether local angiotensin II (Ang II) activity contributes to the progression of renal injury in aldosterone/salt-induced hypertensive rats. Uninephrectomized rats were treated with 1% NaCl in a drinking solution and one of the following combinations for 6 weeks: vehicle (2% ethanol, s.c.; n=9), aldosterone (0.75 μg/h, s.c.; n=8), aldosterone+Ang II type 1 receptor blocker olmesartan (10 mg/kg/day, p.o.; n=8), or aldosterone+olmesartan (100 mg/kg/day, p.o.; n=9). Aldosterone/salt-treated hypertensive rats exhibited severe proteinuria and renal injury characterized by glomerular sclerosis and tubulointerstitial fibrosis. Aldosterone/salt-induced renal injury was associated with augmented expression of angiotensin converting enzyme and Ang II levels in the renal cortex and medullary tissues. Renal cortical and medullary mRNA expression of transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF) as well as the collagen contents were increased in aldosterone/salt-treated hypertensive rats. Treatment with olmesartan (10 or 100 mg/kg/day) had no effect on blood pressure but attenuated proteinuria in a dose-dependent manner. Olmesartan at 10 mg/kg/day tended to decrease renal cortical and medullary Ang II levels, TGF-β and CTGF expression, and collagen contents; however, these changes were not significant. On the other hand, an ultrahigh dose of olmesartan (100 mg/kg/day) significantly decreased these values and ameliorated renal injury. These data suggest that augmented local Ang II activity contributes, at least partially, to the progression of aldosterone/salt-dependent renal injury.


European Journal of Pharmacology | 1999

Renal interstitial concentration of adenosine during endotoxin shock.

Akira Nishiyama; Katsuyuki Miura; Akira Miyatake; Yoshihide Fujisawa; Wang Yue; Toshiki Fukui; Shoji Kimura; Youichi Abe

The present experiments were designed to measure the renal interstitial concentration of adenosine in an attempt to determine whether adenosine participates in the regulation of renal hemodynamics during endotoxin shock. The renal concentration of adenosine in response to lipopolysaccharide (LPS) administration was measured in anesthetized dogs using a microdialysis method. Renal hemodynamic responses to LPS were also determined with and without the adenosine A(1) receptor antagonist, (E)-(R)-1-[3-(2-phenylpyrazolo[1, 5-a]pyridin-3-yl)acryloyl]pyperidin-2-ylacetic acid (FK352). Intravenous administration of LPS (0.5 mg/kg) significantly decreased renal blood flow and mean arterial pressure. These parameters reached the minimum level at 5-10 min after the LPS administration and then returned to their respective preinjection levels. The renal interstitial concentration of adenosine increased from 118+/-18 to 381+/-46 nM. During treatment with FK352, LPS decreased renal blood flow and mean arterial pressure, however, these reductions were significantly attenuated. LPS also increased adenosine concentration, but its rise was reduced along with the attenuation of LPS-induced renal blood flow reduction. These results suggest that adenosine was involved in LPS-induced renal hemodynamic changes and that FK352 has a protective effect against renal dysfunction during endotoxin shock. Since the adenosine concentration was inversely proportional to renal blood flow levels, it can be assumed that adenosine plays an important role as a mediator, but not as an initiator of renal hemodynamic changes during endotoxin shock.

Collaboration


Dive into the Akira Miyatake's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsufumi Mizushige

Kagawa Prefectural College of Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge