Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takatomi Shokoji is active.

Publication


Featured researches published by Takatomi Shokoji.


Hypertension | 2004

Possible Contributions of Reactive Oxygen Species and Mitogen-Activated Protein Kinase to Renal Injury in Aldosterone/Salt-Induced Hypertensive Rats

Akira Nishiyama; Li Yao; Yukiko Nagai; Kayoko Miyata; Masanori Yoshizumi; Shoji Kagami; Shuji Kondo; Hideyasu Kiyomoto; Takatomi Shokoji; Shoji Kimura; Masakazu Kohno; Youichi Abe

Abstract—Studies were performed to test the hypothesis that reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) contribute to the pathogenesis of aldosterone/salt-induced renal injury. Rats were given 1% NaCl to drink and were treated with one of the following combinations for 6 weeks: vehicle (0.5% ethanol, SC, n=6); aldosterone (0.75 &mgr;g/H, SC, n=8); aldosterone plus a selective mineralocorticoid receptor antagonist; eplerenone (0.125% in chow, n=8); aldosterone plus an antioxidant; and tempol (3 mmol/L in drinking solution, n=8). The activities of MAPKs, including extracellular signal-regulated kinases (ERK)1/2, c-Jun-NH2-terminal kinases (JNK), p38MAPK, and big-MAPK-1 (BMK1) in renal cortical tissues were measured by Western blot analysis. Aldosterone-infused rats showed higher systolic blood pressure (165±5 mm Hg) and urinary excretion of protein (106±24 mg/d) than vehicle-infused rats (118±3 mm Hg and 10±3 mg/d). Renal cortical mRNA expression of p22phox, Nox-4, and gp91phox, measured by real-time polymerase chain reaction, was increased in aldosterone-infused rats by 2.3, 4.3, and 3.0-fold, respectively. Thiobarbituric acid-reactive substances (TBARS) content in renal cortex was also higher in aldosterone (0.23±0.02) than vehicle-infused rats (0.09±0.01 nmol/mg protein). ERK1/2, JNK, and BMK1 activities were significantly elevated in aldosterone-infused rats by 3.3, 2.3, and 3.0-fold, respectively, whereas p38MAPK activity was not changed. Concurrent administration of eplerenone or tempol to aldosterone-infused rats prevented the development of hypertension (127±2 and 125±5 mm Hg), and the elevations of urinary excretion of protein (10±2 and 9±2 mg/day) or TBARS contents (0.08±0.01 and 0.11±0.01 nmol/mg protein). Furthermore, eplerenone and tempol treatments normalized the activities of ERK1/2, JNK, and BMK1. These data suggest that ROS and MAPK play a role in the progression of renal injury induced by chronic elevations in aldosterone.


Hypertension | 2005

Role of NAD(P)H Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Cardioprotection of Ischemic Reperfusion Injury by Angiotensin II

Shoji Kimura; Guo-Xing Zhang; Akira Nishiyama; Takatomi Shokoji; Li Yao; Yu-Yan Fan; Matlubur Rahman; Takeo Suzuki; Hajime Maeta; Youichi Abe

Reactive oxygen species (ROS) participate in cardioprotection of ischemic reperfusion (I/R) injury via preconditioning mechanisms. Mitochondrial ROS have been shown to play a key role in this process. Angiotensin II (Ang II) exhibits pharmacological preconditioning; however, the involvement of NAD(P)H oxidase, known as an ROS-generating enzyme responsive to Ang II stimuli, in the preconditioning process remains unclear. We compared the effects of 5-hydroxydecanoate (5-HD; an inhibitor of mitochondrial ATP-sensitive potassium channels), apocynin (an NAD(P)H oxidase inhibitor), and 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (tempol; a membrane permeable radical scavenger) on pharmacological preconditioning by Ang II in rat cardiac I/R injury in vivo. Treatment with a pressor dose of Ang II before a 30-minute coronary occlusion reduced infarct size as determined 24 hours after reperfusion. The protective effects of Ang II were eliminated by pretreatment with 5-HD or apocynin, similar to tempol. Both 5-HD and apocynin suppressed the enhanced cardiac lipid peroxidation and activation of the apoptosis signal-regulating kinase/p38, c-Jun NH2-terminal kinase (JNK) pathways, but not the Raf/MEK/extracellular signal-regulated kinase pathway, elicited by acutely administered Ang II. Apocynin but not 5-HD suppressed Ang II–induced augmentations of the NAD(P)H oxidase complex formation (p47phox, p22phox, and Rac-1) and its activity in the heart. Finally, 5-HD suppressed superoxide production by isolated cardiac mitochondria without any effect on their respiration. These results suggest that the preconditioning effects of Ang II for cardiac I/R injury may be mediated by cardiac mitochondria-derived ROS enhanced through NAD(P)H oxidase via JNK and p38 mitogen-activated protein kinase activation.


Journal of The American Society of Nephrology | 2005

Aldosterone Stimulates Reactive Oxygen Species Production through Activation of NADPH Oxidase in Rat Mesangial Cells

Kayoko Miyata; Matlubur Rahman; Takatomi Shokoji; Yukiko Nagai; Guo-Xing Zhang; Guang-Ping Sun; Shoji Kimura; Tokihito Yukimura; Hideyasu Kiyomoto; Masakazu Kohno; Youichi Abe; Akira Nishiyama

It has recently been shown that glomerular mesangial injury is associated with increases in renal cortical reactive oxygen species (ROS) levels in rats treated chronically with aldosterone and salt. This study was conducted to determine the mechanisms responsible for aldosterone-induced ROS production in cultured rat mesangial cells (RMC). Oxidative fluorescent dihydroethidium was used to evaluate intracellular production of superoxide anion (O(2)(-)) in intact cells. The lucigenin-derived chemiluminescence assay was used to determine NADPH oxidase activity. The staining of dihydroethidium was increased in a dose-dependent manner by aldosterone (1 to 100 nmol/L) with a peak at 3 h in RMC. Aldosterone (100 nmol/L for 3 h) also significantly increased NADPH oxidase activity from 232 +/- 18 to 346 +/- 30 cpm/5 x 10(4) cells. Immunoblotting data showed that aldosterone (100 nmol/L for 3 h) increased p47phox and p67phox protein levels in the membrane fraction by approximately 2.1- and 2.3-fold, respectively. On the other hand, mRNA expression of NADPH oxidase membrane components, p22phox, Nox-1, and Nox-4, were not altered by aldosterone (for 3 to 12 h) in RMC. Pre-incubation with the selective mineralocorticoid receptor (MR) antagonist, eplerenone (10 micromol/L), significantly attenuated aldosterone-induced O(2)(-) production, NADPH oxidase activation and membranous translocation of p47phox and p67phox. These results suggest that aldosterone-induced ROS generation is associated with NAPDH oxidase activation through MR-mediated membranous translocation of p47phox and p67phox in RMC. These cellular actions of aldosterone may play a role in the pathogenesis of glomerular mesangial injury.


Hypertension | 2005

Mitochondria-Derived Reactive Oxygen Species and Vascular MAP Kinases: Comparison of Angiotensin II and Diazoxide

Shoji Kimura; Guo-Xing Zhang; Akira Nishiyama; Takatomi Shokoji; Li Yao; Yu-Yan Fan; Matlubur Rahman; Youichi Abe

Reactive oxygen species (ROS) are key mediators in signal transduction of angiotensin II (Ang II). However, roles of vascular mitochondria, a major intracellular ROS source, in response to Ang II stimuli have not been elucidated. This study aimed to examine the involvement of mitochondria-derived ROS in the signaling pathway and the vasoconstrictor mechanism of Ang II. Using 5-hydroxydecanoate (5-HD; a specific inhibitor of mitochondrial ATP-sensitive potassium [mitoKATP] channels) and tempol (a superoxide dismutase mimetic), the effects of Ang II and diazoxide (a mitoKATP channel opener) were compared on redox-sensitive mitogen-activated protein (MAP) kinase activation in rat vascular smooth muscle cells (RVSMCs) in vitro and in rat aorta in vivo. Stimulation of RVSMCs by Ang II or diazoxide increased phosphorylated MAP kinases (ERK1/2, p38, and JNK), as well as superoxide production, which were then suppressed by 5-HD pretreatment in a dose-dependent manner, except for ERK1/2 activation by Ang II. The same events were reproduced in rat aorta in vivo. Ang II-like diazoxide depolarized the mitochondrial membrane potential (&Dgr;&PSgr;M) of RVSMCs determined by JC-1 fluorescence, which was inhibited by 5-HD. 5-HD did not modulate Ang II–induced calcium mobilization in RVSMCs and did not affect on the vasoconstrictor effect in either acute or chronic phases of Ang II–induced hypertension. These results reveal that Ang II stimulates mitochondrial ROS production through the opening of mitoKATP channels in the vasculature-like diazoxide, leading to reduction of &Dgr;&PSgr;M and redox-sensitive activation of MAP kinase; however, generated ROS from mitochondria do not contribute to Ang II–induced vasoconstriction.


Hypertension | 2003

Renal sympathetic nerve responses to Tempol in spontaneously hypertensive rats

Takatomi Shokoji; Akira Nishiyama; Yoshihide Fujisawa; Hirofumi Hitomi; Hideyasu Kiyomoto; Norihiro Takahashi; Shoji Kimura; Masakazu Kohno; Youichi Abe

Abstract—Recent studies have implicated a contribution of oxidative stress to the development of hypertension. Studies were performed to determine the effects of the superoxide dismutase (SOD) mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (Tempol) on vascular superoxide production and renal sympathetic nerve activity (RSNA) in anesthetized Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Compared with WKY rats (n=6), SHR showed a doubled vascular superoxide production, which was normalized by treatment with Tempol (3 mmol/L, n=7). In WKY rats (n=6), Tempol (30 mg/kg IV) significantly decreased mean arterial pressure (MAP) from 108±5 to 88±6 mm Hg and HR from 304±9 to 282±6 beats/min. In SHR (n=6), Tempol significantly decreased MAP from 166±4 to 123±9 mm Hg and HR from 380±7 to 329±12 beats/min. Furthermore, Tempol significantly decreased RSNA in both WKY rats and SHR. On the basis of group comparisons, the percentage decreases in MAP (−28±4%), HR (−16±3%) and integrated RSNA (−63±6%) in SHR were significantly greater than in WKY rats (−17±3%, −9±2%, and −30±4%, respectively). In SHR, changes in integrated RSNA were highly correlated with changes in MAP (r=0.85, P <0.0001) during administration of Tempol (3, 10, and 30 mg/kg IV). In both WKY rats and SHR (n=4, respectively), intracerebroventricular injection of Tempol (300 &mgr;g/1 &mgr;L) did not alter MAP, HR, or RSNA. Intravenous administration of a SOD inhibitor, diethyldithio-carbamic acid (30 mg/kg), significantly increased MAP, HR, and integrated RSNA in both WKY rats and SHR (n=6, respectively). These results suggest that augmented superoxide production contributes to the development of hypertension through activation of the sympathetic nervous system.


Journal of The American Society of Nephrology | 2005

Temporary angiotensin II blockade at the prediabetic stage attenuates the development of renal injury in type 2 diabetic rats.

Yukiko Nagai; Li Yao; Hiroyuki Kobori; Kayoko Miyata; Yuri Ozawa; Akira Miyatake; Tokihito Yukimura; Takatomi Shokoji; Shoji Kimura; Hideyasu Kiyomoto; Masakazu Kohno; Youichi Abe; Akira Nishiyama

Whether temporary angiotensin II (AngII) blockade at the prediabetic stage attenuates renal injury in type 2 diabetic OLETF rats later in life was investigated. OLETF rats were treated with an AT(1) receptor antagonist (olmesartan, 0.01% in food), angiotensin-converting enzyme inhibitor (temocapril, 0.01% in food), a combination of the two, or hydralazine (25 mg/kg per d) at the prediabetic stage (4 to 11 wk of age) and then monitored without further treatment until 50 wk of age. At 11 wk of age, blood glucose levels and urinary protein excretion (U(protein)V) were similar between OLETF and control LETO rats. However, OLETF rats showed higher kidney AngII contents and type IV collagen mRNA expression than LETO rats at this age. These decreased with olmesartan, temocapril, and a combination of these but not with hydralazine. At 50 wk of age, diabetic OLETF rats showed higher BP, U(protein)V, and intrarenal AngII levels than LETO rats. Temporary AngII blockade did not affect glucose metabolism or the development of hypertension in OLETF rats but significantly suppressed proteinuria and ameliorated glomerular injury. However, no parameters were affected by temporary hydralazine treatment. The present study demonstrated that intrarenal AngII and type IV collagen expression are already augmented long before diabetes becomes apparent in OLETF rats. Furthermore, temporary AngII blockade at the prediabetic stage attenuates the progression of renal injury in these animals. These data suggest that early AngII blockade could be an effective strategy for preventing the development of type 2 diabetic renal injury later in life.


Hypertension | 2005

Involvement of Aldosterone and Mineralocorticoid Receptors in Rat Mesangial Cell Proliferation and Deformability

Akira Nishiyama; Li Yao; Yu-Yan Fan; Moe Kyaw; Noriyuki Kataoka; Ken Hashimoto; Yukiko Nagai; Emi Nakamura; Masanori Yoshizumi; Takatomi Shokoji; Shoji Kimura; Hideyasu Kiyomoto; Katsuhiko Tsujioka; Masakazu Kohno; Toshiaki Tamaki; Fumihiko Kajiya; Youichi Abe

We demonstrated recently that chronic administration of aldosterone to rats induces glomerular mesangial injury and activates mitogen-activated protein kinases including extracellular signal-regulated kinases 1/2 (ERK1/2). We also observed that the aldosterone-induced mesangial injury and ERK1/2 activation were prevented by treatment with a selective mineralocorticoid receptor (MR) antagonist, eplerenone, suggesting that the glomerular mesangium is a potential target for injuries induced by aldosterone via activation of MR. In the present study, we investigated whether MR is expressed in cultured rat mesangial cells (RMCs) and involved in aldosterone-induced RMC injury. MR expression and localization were evaluated by Western blotting analysis and fluorolabeling methods. Cell proliferation and micromechanical properties were determined by [3H]-thymidine uptake measurements and a nanoindentation technique using an atomic force microscope cantilever, respectively. ERK1/2 activity was measured by Western blotting analysis with an anti-phospho–ERK1/2 antibody. Protein expression and immunostaining revealed that MR was abundant in the cytoplasm of RMCs. Aldosterone (1 to 100 nmol/L) dose-dependently activated ERK1/2 in RMCs with a peak at 10 minutes. Pretreatment with eplerenone (10 &mgr;mol/L) significantly attenuated aldosterone-induced ERK1/2 phosphorylation. Aldosterone (100 nmol/L) treatment for 30 hours increased [3H]-thymidine incorporation and decreased the elastic modulus, indicating cellular proliferative and deforming effects of aldosterone, respectively. These aldosterone-induced changes in cellular characteristics were prevented by pretreatment with eplerenone or an ERK (MEK) inhibitor, PD988059 (100 &mgr;mol/L). The results indicate that aldosterone directly induces RMC proliferation and deformability through MR and ERK1/2 activation, which may contribute to the pathogenesis of glomerular mesangial injury.


Hypertension | 2003

Role of Angiotensin II and Reactive Oxygen Species in Cyclosporine A-Dependent Hypertension

Akira Nishiyama; Hiroyuki Kobori; Toshiki Fukui; Guo-Xing Zhang; Li Yao; Matlubur Rahman; Hirofumi Hitomi; Hideyasu Kiyomoto; Takatomi Shokoji; Shoji Kimura; Masakazu Kohno; Youichi Abe

Abstract—Treatment with cyclosporine A (CysA), a potent immunosuppressive agent, is associated with systemic and renal vasoconstriction, leading to hypertension. The present study was conducted to elucidate the contribution of angiotensin II (Ang II) to CysA-induced hypertension and reactive oxygen species (ROS) generation. CysA (30 mg/kg per day SC), given for 3 weeks in rats, increased systolic blood pressure (SBP) from 119±2 to 145±3 mm Hg (n=7). Plasma and kidney Ang II levels were significantly higher in CysA-treated rats (136±10 fmol/mL and 516±70 fmol/g) than in vehicle-treated (1 mL olive oil) rats (76±10 fmol/mL and 222±21 fmol/g, n=7). CysA treatment increased AT1 receptor protein expression in the aorta (by 251±35%), whereas it was reduced in the kidney (by −32±4%). Superoxide anion production in aortic segments and kidney thiobarbituric acid–reactive substance (TBARS) contents were higher in CysA-treated rats (26±2 counts/min per milligram and 37±3 nmol/g) than in vehicle-treated rats (17±1 counts/min per milligram and 24±3 nmol/g). Concurrent administration of an AT1 receptor antagonist, valsartan (30 mg/kg per day, in drinking water), to CysA-treated rats (n=7) significantly decreased SBP (113±4 mm Hg) and prevented increases in vascular superoxide (16±2 counts/min per milligram) and kidney TBARS contents (21±3 nmol/g). Similarly, treatment with a superoxide dismutase mimetic, 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (Tempol; 3 mmol/L in drinking water, n=7), prevented CysA-induced increases in SBP (115±3 mm Hg), vascular superoxide (16±1 counts/min per milligram), and kidney TBARS contents (19±2 nmol/g). These data suggest that ROS generation induced by augmented Ang II levels contributes to the development of CysA-induced hypertension.


Journal of The American Society of Nephrology | 2004

The SOD mimetic tempol ameliorates glomerular injury and reduces mitogen-activated protein kinase activity in Dahl salt-sensitive rats.

Akira Nishiyama; Masanori Yoshizumi; Hirofumi Hitomi; Shoji Kagami; Shuji Kondo; Akira Miyatake; Megumu Fukunaga; Toshiaki Tamaki; Hideyasu Kiyomoto; Masakazu Kohno; Takatomi Shokoji; Shoji Kimura; Youichi Abe

It was shown recently that renal injury in Dahl salt-sensitive (DS) hypertensive rats is accompanied by mitogen-activated protein kinase (MAPK) activation. The present study was conducted to elucidate the contribution of reactive oxygen species to MAPK activities and renal injury in DS rats. DS rats were maintained on high salt (H; 8.0% NaCl; n = 7) or low salt (L; 0.3% NaCl; n = 6) diets; H + a superoxide dismutase mimetic, tempol (3 mmol/L in drinking water; n = 8); or H + hydralazine (0.5 mmol/L in drinking water; n = 8) for 4 wk. Mean BP (MBP) in DS/H and DS/L rats was 185 +/- 7 and 113 +/- 3 mmHg, respectively. DS/H rats showed a higher ratio of urinary protein excretion and creatinine (U(protein)V/U(cr)V; 20.3 +/- 1.1) and a higher cortical collagen content (22 +/- 1 micro g/mg) than in DS/L rats (2.4 +/- 0.1 and 13 +/- 1 micro g/mg, respectively). The expression of p22-phox and Nox-1, essential components of NAD(P)H oxidase, in renal cortical tissue was approximately threefold higher in DS/H rats than in DS/L rats. Increased activities of renal cortical MAPK, including extracellular signal-regulated kinases (ERK) 1/ERK2 and c-Jun NH(2)-terminal kinases (JNK) were also observed in DS/H rats by 7.0 +/- 0.7- and 4.3 +/- 0.2-fold, respectively. Tempol treatment significantly decreased MBP (128 +/- 3 mmHg), U(protein)V/U(cr)V (4.8 +/- 0.4), and cortical collagen content (14 +/- 1 micro g/mg) and normalized ERK1/ERK2 and JNK activities in DS/H rats. Histologically, tempol markedly ameliorated progressive sclerotic and proliferative glomerular changes in DS/H rats. Hydralazine-treated DS/H rats showed similar MBP (127 +/- 5 mmHg) to tempol-treated DS/H rats. Hydralazine also decreased U(protein)V/U(cr)V (16.2 +/- 1.5) and cortical collagen content (19 +/- 1 micro g/mg) in DS/H rats. However, these values were significantly higher than those of tempol-treated rats. Furthermore, although hydralazine significantly reduced JNK activity (-56 +/- 3%), ERK1/ERK2 activities were unaffected. These data suggest that reactive oxygen species, generated by NAD(P)H oxidase, contribute to the progression of renal injury through ERK1/ERK2 activation in DS/H hypertensive rats.


Hypertension | 2004

Effects of local administrations of tempol and diethyldithio-carbamic on peripheral nerve activity.

Takatomi Shokoji; Yoshihide Fujisawa; Shoji Kimura; Matlubur Rahman; Hideyasu Kiyomoto; Keisuke Matsubara; Kumiko Moriwaki; Yasuharu Aki; Akira Miyatake; Masakazu Kohno; Youichi Abe; Akira Nishiyama

We have recently shown that systemic administration of a superoxide dismutase mimetic, tempol, resulted in decreases in mean arterial pressure and heart rate along with a reduction in renal sympathetic nerve activity (RSNA). It has also been shown that these parameters are significantly increased by systemic administration of a superoxide dismutase inhibitor, diethyldithio-carbamic (DETC), indicating a potential role of reactive oxygen species in the regulation of RSNA. In this study, we examined the effects of local administrations of 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) and DETC on RSNA in anesthetized rats. Either tempol or DETC was directly administered onto the renal sympathetic nerves located between the electrode and ganglion. Local application of tempol (10 μL, 0.17 to 1.7 mol/L, n=6) resulted in dose-dependent decreases in integrated RSNA (by −81±6% at 1.7 mol/L) without alterations in mean arterial pressure and heart rate. In contrast, DETC (10 μL, 0.17 to 1.7 mol/L, n=6) increased RSNA dose-dependently. The responses of RSNA to tempol and DETC were significantly greater in spontaneously hypertensive rats than in normotensive rats (n=6, respectively). Local application of sodium nitroprusside (1 mmol/L) or NG-nitro-L-arginine methyl ester (0.11 mol/L) altered neither basal RSNA nor tempol-induced reductions in RSNA (n=6 and 5, respectively). A voltage-gated potassium channel blocker, 4-aminopyridine (0.1 mol/L), significantly decreased basal RSNA (by −81±1%) and completely prevented DETC-induced increases in RSNA (n=5). These results suggest that reactive oxygen species play a role in the regulation of peripheral sympathetic nerve activity, and that at least part of this mechanism is mediated through voltage-gated potassium channels.

Collaboration


Dive into the Takatomi Shokoji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideyasu Kiyomoto

Kagawa Prefectural College of Health Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge