Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiyoshi Shinya is active.

Publication


Featured researches published by Akiyoshi Shinya.


Acta Odontologica Scandinavica | 2005

Evaluation of some properties of two fiber-reinforced composite materials

Lippo Lassila; Arzu Tezvergil; Milla S. Lahdenperä; Pasi Alander; Akiyoshi Shinya; Akikazu Shinya; Pekka K. Vallittu

Objective. Water sorption, flexural properties, bonding properties, and elemental composition of photopolymerizable resin-impregnated fiber-reinforced composite (FRC) materials (everStick C&B and BR-100) (FPD) were evaluated in this study. Material and methods. Bar-shaped specimens (2×2×25 mm) were prepared for water sorption and flexural strength testing. The specimens (n=6) were polymerized either with a hand light-curing unit for 40 s or, additionally, in a light-curing oven for 20 min and stored in water for 30 days. Water sorption was measured during this time, followed by measurements of flexural strength and modulus. A shear bond strength test was performed to determine the bonding characteristics of polymerized FRC to composite resin luting cement (Panavia-F), (n=15). The cement was bonded to the FRC substrate and the specimens were thermocycled 5000 times (5–55°C) in water. SEM/EDS were analyzed to evaluate the elemental composition of the glass fibers and the fiber distribution in cross section. Results. ANOVA showed significant differences in water sorption according to brand (p<0.05). Water sorption of everStick C&B was 1.86 wt% (hand-unit polymerized) and 1.94 wt% (oven polymerized), whereas BR-100 was 1.07 wt% and 1.17 wt%, respectively. The flexural strength of everStick C&B after 30 days’ water storage was 559 MPa (hand-unit polymerized) and 796 MPa (oven-polymerized); for BR-100, the values were 547 MPa and 689 MPa, respectively. Mean shear bond strength of composite resin cement to the FRC varied between 20.1 and 23.7 MPa, showing no statistical difference between the materials. SEM/EDS analysis revealed that fibers of both FRC materials consist of the same oxides (SiO2, CaO, and Al2O3) in ratios. The distribution of fibers in the cross section of specimens was more evenly distributed in everStick C&B than in BR-100. Conclusion. The results of this study suggest that there are some differences in the tested properties of the FRC materials.


Journal of Dentistry | 2011

High volume individual fibre post versus low volume fibre post: The fracture load of the restored tooth

Minori Hatta; Akikazu Shinya; Pekka K. Vallittu; Akiyoshi Shinya; Lippo V.J. Lassila

OBJECTIVES The purpose of this study was to evaluate the fracture loads of post-and-core systems with two different individually formed fibre post designs and polymerization conditions. METHODS Totally seventy-two (n=8/group) bovine teeth were cut and made up the root length of 15.0mm. They were divided into 3 main groups (Group A, B, C). A: one glass fibre post was light-cured before cementation, B: fibres were bundled to fill the entire root canal opening and light-cured before cementation, C: one unpolymerized glass fibre post was inserted into cement-filled root canal and light-cured with luting cement (ParaCem). Moreover specimens of each group were divided into 3 subgroups according to the post length: subgroup 1: 10mm; subgroup 2: 7.5mm; subgroup 3: 5.0mm. After cementation, the core was built up, and then made the composite resin crown (Filtek Z250). Fabricated specimen was loaded from 45° of palatal side at a crosshead speed of 1.0mm/min. The first load drop and maximum fracture loads were statistically analyzed by ANOVA and Tukeys test. RESULTS Maximum fracture load of Group B (433 N) and C (418 N) are significantly higher than Group A (284 N) (p<0.01). Short post (5mm) provided higher fracture loads in all main groups, especially in Group C. CONCLUSIONS Using short and thick fibre post system (the same diameter as the root canal) showed higher strength than one fibre post only. In addition, by curing the cement and the fibre material simultaneously, the strength of the restored tooth was increased.


International Journal of Oral Science | 2010

Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

Jie Lin; Akikazu Shinya; Harunori Gomi; Akiyoshi Shinya

AimTo evaluate the interactive effects of different self‐adhesive resin cements and tribochemical treatment on bond strength to zirconia.MethodologyThe following self‐adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment ‐ silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength.ResultsSilica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP‐containing self‐adhesive resin cement CL had the highest bond strengths to zirconia.ConclusionApplying silica coating and tribochemical treatment improved the bond strength of self‐adhesive resin cement to zirconia, especially for CL.


Odontology | 2004

Heat curing of UTMA-based hybrid resin : effects on the degree of conversion and cytotoxicity

Eija S. Säilynoja; Akiyoshi Shinya; Mika Koskinen; Jukka Salonen; Takashi Masuda; Akikazu Shinya; Tetsuji Matsuda; Takashi Mihara; Naoyuki Koide

This study was designed to determine the effects of the heat curing time on a urethane tetramethacrylate (UTMA)-based hybrid resin and specifically on the degree of conversion (DC) and cytotoxicity. The materials used in this study were Estenia, a new-generation hybrid resin, and an experimental fiber reinforcement, Br-100. The DC values of the hybrid resin samples were measured using a Fourier transform infrared (FTIR) spectrophotometer after 180 s of light curing followed by heat curing (0, 15, 30, and 60 min). A method comparing intensities of C = C and N—H vibrations of the sample was used to calculate the final DC values. FTIR spectra were measured both inside and on the surface of the sample. The calculated DC values increased by increasing the heat curing times. After light curing only and after 15-min heat curing, the DC values inside the samples were smaller than the corresponding DC values at the surfaces of the samples. After 60 min of heat curing, the samples achieved homogeneous polymerization (DC% = 65). The cytotoxicity of the material was studied from the glass fiber-reinforced hybrid resin samples, which were first light cured and then heat cured (15, 30, and 60 min). Cytotoxicity was tested using both direct contact and extract methods. For the extract tests, the test specimens were incubated in a cell culture media at 37°, 54°, or 72°C for 24 h. The heat curing times used had no effect on cytotoxicity. The incubation temperature, however, did have a significant effect. The extract obtained from 72°C incubation showed a cytotoxic effect whereas the others did not. The direct contact test did not show cytotoxicity.


Journal of Prosthodontic Research | 2013

Effect of loading conditions on the fracture toughness of zirconia

Kosuke Harada; Akikazu Shinya; Daiichiro Yokoyama; Akiyoshi Shinya

PURPOSE A Vickers hardness indenter was pressed into yttria-stabilized zirconia (Y-TZP) by the indentation fracture method (IF method). METHODS The effect on the calculated Vickers hardness, fracture toughness values, and indentation fracture load (9.8, 49, 98, 196, and 294 N) was examined to deduce the optimum conditions of the IF method. Calculated Vickers hardness and fracture toughness values were analyzed with one-way analysis of variance and then multiple comparisons (Scheffe). The appearance of on indentation and cracks was also evaluated using a scanning electron microscopy (SEM). RESULTS Indentation of Y-TZP was generated by 9.8 and 49 N of indentation fracture load, however cracks could not be confirmed with the microscope attached to the Vickers hardness tester. Both indentation and cracks were observed at 98, 196 and 294 N of indentation fracture load obtained values of 7.1 and 6.8 MPam(1/2). Cracks noted at the 98 N were not clear, whereas the 196 and 294 N showed especially clear cracks. Due to the hardness of zirconia and the light loads, fracture toughness values for 9.8, 49, and 98 N could not be calculated. There was no significant difference between 196 and 294 N, when calculated fracture toughness values were analyzed with multiple comparisons. SEM revealed clear indentation and cracks, that extended linearly, but no chips or fractures were observed. Surface changes were observed at 196 and 294 N that are presumed to be accompanied by phase transition around the cracks. CONCLUSIONS Optimum experimental conditions of the indentation fracture load in the IF method were determined as 196 and 294 N.


Journal of Prosthodontic Research | 2011

The effect of surface treatment on bond strength of layering porcelain and hybrid composite bonded to zirconium dioxide ceramics

Minori Hatta; Akikazu Shinya; Daiichiro Yokoyama; Harunori Gomi; Pekka K. Vallittu; Akiyoshi Shinya

PURPOSE The purpose of this study was to investigate the differences between Rocatec (as surface treatment) and #600 polishing (as control) on shear bond strength of layering porcelain and hybrid composite to zirconium dioxide ceramics. METHODS Manufactured zirconia blocks used in this study were yttrium partially stabilized zirconia (YTZ(®)), and veneering materials were NobelRondo Zirconia Dentin A2 High Value (NZR) and Estenia C&B (ES). Total 48 zirconia blocks were fabricated (10 mm × 10 mm × 20 mm). The blocks of 24 each were treated by Rocatec and #600 paper, respectively. Surface treated zirconia blocks were divided into two groups, according to veneering materials of NZR and ES. NZR was fired and ES was polymerized to zirconia. The fabricated specimen was fixed to mounting jig and applied shear force using the universal testing machine at a crosshead speed of 0.5 mm/min. All results were statistically analyzed by two-way ANOVA and Tukeys test. EPMA analysis and SPM analysis of specimen interface were carried out. RESULTS Mean shear bond strength of each condition was: NZR/#600; 23.3 (S.D. ±7.0) MPa, NZR/Rocatec; 26.9 (S.D. ±7.0) MPa, ES/#600; 10.7 (S.D.±2.4) MPa, ES/Rocatec; 12.5 (S.D.±0.8) MPa. CONCLUSIONS From the results of this study, shear bond strength of layering porcelain to zirconia was higher than that of restorative hybrid resin. However the more study will be needed, the appropriate choice of materials became the gides to the expansion of the applied cases of metal-free prothesis.


International Journal of Biomaterials | 2010

Development of 3D CAD/FEM Analysis System for Natural Teeth and Jaw Bone Constructed from X-Ray CT Images.

Aki Hasegawa; Akikazu Shinya; Yuji Nakasone; Lippo V.J. Lassila; Pekka K. Vallittu; Akiyoshi Shinya

A three-dimensional finite element model of the lower first premolar, with the three layers of enamel, dentin, and pulp, and the mandible, with the two layers of cortical and cancellous bones, was directly constructed from noninvasively acquired CT images. This model was used to develop a system to analyze the stresses on the teeth and supporting bone structure during occlusion based on the finite element method and to examine the possibility of mechanical simulation.


Journal of Prosthetic Dentistry | 2016

Effect of accelerated aging on the fracture toughness of zirconias

Kosuke Harada; Akikazu Shinya; Harunori Gomi; Yasuo Hatano; Akiyoshi Shinya; Ariel J. Raigrodski

STATEMENT OF PROBLEM Low temperature degradation (LTD) of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) is of concern. PURPOSE The purpose of this in vitro study was to assess the effect of accelerated aging on the Vickers hardness and fracture toughness of a newly developed Y-TZP and 2 primary Y-TZPs. MATERIAL AND METHODS Two primary 3 mol% Y-TZP, Lava (LA), Everest Zirconium Soft (EV), and a new 3 mol% Y-TZP, ZirTough (NZ) were assessed. Specimens (n=30 each brand) of 10 × 10 × 3 mm were hydrothermally treated for accelerated aging to examine LTD. Five conditions were used (n = 5 per condition) as follows: control group (no aging); 5 hours at 134°C/0.2 MPa (5h-134°C); 100 hours at 134°C/0.2 MPa (100 h-134°C); 5 hours at 180°C/1.0 MPa (5 h-180°C); and 20 hours at 180°C/1.0 MPa (20 h-180°C). Fracture toughness was measured by using the indentation fracture (IF) method under a loading of 294 N and calculated from the obtained measurements. To observe differences in particle composition and fracture patterns, mirror-polished test specimens (n=5 each brand) were re-sintered at 1200°C for 1 hour as a thermal etching process, and a Vickers indenter was pressed into the test specimens according to the IF method. Test piece surfaces and cracks were observed with scanning electron microscopy (SEM). One-way ANOVA and the post- hoc (Scheffé test were used to examine) interlevel significant differences (α=.05). RESULTS The Vickers hardness and fracture toughness were as follows: 1319 HV and 7.36 MPa · m(1/2) for LA, and 1371 HV and 6.76 MPa · m(1/2) for EV in no aging; 1334 HV and 7.02 MPa · m(1/2) for LA, and 1346 HV and 6.07 MPa · m(1/2) for EV in 5h-134°C. No significant differences were found between no aging and 5h-134°C for LA and EV for Vickers hardness and fracture toughness. Measurements could not be made for LA and EV for 100 h-134°C, 5h-180°C, or 20 h-180°C because of fractures in the surface layer. For NZ, Vickers hardness and fracture toughness were as follows: 1261 HV and 15.60 MPa · m(1/2) in no aging; 1217 HV and 14.98 MPa · m(1/2) in 5h-134°C; 1231 HV and 15.13 MPa · m(1/2) in 100 h-134°C; 1252 HV and 15.51 MPa · m(1/2) in 5h-180°C; 1224 HV and 15.01 MPa · m(1/2) in 20 h-180°C. No significant differences were shown in the Vickers hardness and fracture toughness. SEM observations after the thermal etching processing of NZ showed zirconia particles and scattered alumina particles. CONCLUSION Measurements with LA and EV could only be made for no aging and 5h-134°C, and no significant differences were found in Vickers hardness and fracture toughness. Measurements were made with NZ under all conditions and no significant differences were found in Vickers hardness and fracture toughness.


Odontology | 2012

Finite element analysis to compare stress distribution of connector of lithia disilicate-reinforced glass–ceramic and zirconia-based fixed partial denture

Jie Lin; Akikazu Shinya; Harunori Gomi; Akiyoshi Shinya

This study used finite element method to analyze the stress distribution in connector of ceramic-based bilayer structures, in simulation of dental crown-like structures with a functional but weak veneer layer bonded onto a strong core layer. The purpose of this study was to evaluate the stress distribution at veneer/core interface of 2 different core materials [Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) and lithia disilicate-reinforced glass–ceramic] using three-dimensional finite element analysis. Within the limitations of this study, finite element analysis showed that stress concentrations were located at the veneer/core interface of the connector in Y-TZP core models. The general observation was that compared with Y-TZP, lithia disilicate-reinforced glass–ceramic showed a relatively stable stress value and had a minor effect on the stress concentration susceptibility.


Journal of Investigative and Clinical Dentistry | 2012

Finite element analysis to compare stress distribution of gold alloy, lithium-disilicate reinforced glass ceramic and zirconia based fixed partial denture

Zhiqiang Zheng; Jie Lin; Akikazu Shinya; Jukka Pekka Matinlinna; Mg Botelho; Akiyoshi Shinya

AIM Clinical data indicate that veneer chipping of zirconia core is more likely than with ceramic-fused-to-metal structures. The purposes of this simulation study were to: (a) use two-dimensional finite element modeling to simulate stresses at the interface of three-unit posterior fixed partial dentures (FPDs) made with three different core materials; and (b) to investigate the influence of three different veneer thicknesses on the stress distribution within the veneer-core complex. METHODS A mesio-distal cross-section of a three-unit FPD was digitized and used to create two-dimensional models of the teeth, supporting bone, different core materials (gold alloy, zirconia and lithia-disilicate reinforced glass ceramic), and different pontic preparation configurations (occlusal veneer thickness 1.0, 1.5, and 2.0 mm). A simulated 100 N vertical occlusal load was applied to the standardized pontic element. Compression stress and tensile stress values were calculated by finite element analysis along the veneer-core interface and compared. RESULTS The veneer-core interfacial stress of zirconia-based FPD is greater than that of gold alloy and lithium-disilicate reinforced glass ceramic core. The veneer-core interface stress value decreased with increasing occlusal veneer thickness. CONCLUSIONS Finite element modeling revealed differences in tensile and compressive stresses between different pontic preparation configurations and core materials. In general, gold alloy and lithium-disilicate reinforced glass ceramic core provided more even stress distribution at the connector and pontic of fixed partial denture than a zirconia framework.

Collaboration


Dive into the Akiyoshi Shinya's collaboration.

Top Co-Authors

Avatar

Akikazu Shinya

The Nippon Dental University

View shared research outputs
Top Co-Authors

Avatar

Harunori Gomi

The Nippon Dental University

View shared research outputs
Top Co-Authors

Avatar

Shigeo Yokozuka

The Nippon Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daiichiro Yokoyama

The Nippon Dental University

View shared research outputs
Top Co-Authors

Avatar

Jie Lin

The Nippon Dental University

View shared research outputs
Top Co-Authors

Avatar

Yuji Nakasone

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aki Hasegawa

The Nippon Dental University

View shared research outputs
Top Co-Authors

Avatar

Minori Hatta

The Nippon Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge