Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Al Conrad is active.

Publication


Featured researches published by Al Conrad.


The Astronomical Journal | 2004

THE TEAM KECK TREASURY REDSHIFT SURVEY OF THE GOODS-NORTH FIELD

Gregory D. Wirth; Christopher N. A. Willmer; Paola Amico; Frederic H. Chaffee; Robert W. Goodrich; Shui Kwok; James Edward Lyke; Jeff Mader; Hien D. Tran; Amy J. Barger; Lennox L. Cowie; P. Capak; Alison L. Coil; Michael C. Cooper; Al Conrad; Marc Davis; S. M. Faber; Esther M. Hu; David C. Koo; David Le Mignant; Jeffrey A. Newman; Antoinette Songaila

We report the results of an extensive imaging and spectroscopic survey in the Great Observatories Origins Deep Survey (GOODS)-North field completed using DEIMOS on the Keck II telescope. Observations of 2018 targets in a magnitude-limited sample of 2911 objects to RAB = 24.4 yield secure redshifts for a sample of 1440 galaxies and active galactic nuclei (AGNs) plus 96 stars. In addition to redshifts and associated quality assessments, our catalog also includes photometric and astrometric measurements for all targets detected in our R-band imaging survey of the GOODS-North region. We investigate various sources of incompleteness and find the redshift catalog to be 53% complete at its limiting magnitude. The median redshift of z = 0.65 is lower than in similar deep surveys because we did not select against low-redshift targets. Comparison with other redshift surveys in the same field, including a complementary Hawaii-led DEIMOS survey, establishes that our velocity uncertainties are as low as σ ≈ 40 km s-1 for red galaxies and that our redshift confidence assessments are accurate. The distributions of rest-frame magnitudes and colors among the sample agree well with model predictions out to and beyond z = 1. We will release all survey data, including extracted one-dimensional and sky-subtracted two-dimensional spectra, thus providing a sizable and homogeneous database for the GOODS-North field, which will enable studies of large-scale structure, spectral indices, internal galaxy kinematics, and the predictive capabilities of photometric redshifts.


The Astrophysical Journal | 2001

A Survey of Organic Volatile Species in Comet C/1999 H1 (Lee) Using NIRSPEC at the Keck Observatory

Michael J. Mumma; Ian S. McLean; Michael A. DiSanti; James E. Larkin; N. R. dello Russo; Karen P. Magee-Sauer; E. E. Becklin; T. Bida; Frederic H. Chaffee; Al Conrad; Donald F. Figer; Andrea M. Gilbert; James R. Graham; N. A. Levenson; Robert E. Novak; D. C. Reuter; Harry I. Teplitz; Mavourneen K. Wilcox; Li-Hong Xu

The organic volatile composition of the long-period comet C/1999 H1 (Lee) was investigated using the —rst of a new generation of cross-dispersed cryogenic infrared spectrometers (NIRSPEC, at the Keck Observatory atop Mauna Kea, HI). On 1999 August 19¨21 the organics spectral region (2.9¨3.7 km) was completely sampled at both moderate and high dispersion, along with the CO fundamental region (near 4.67 km), revealing emission from water, carbon monoxide, methanol, methane, ethane, acetylene, and hydrogen cyanide. Many new multiplets from OH in the 1¨0 band were seen in prompt emission, and numerous new spectral lines were detected. Several spectral extracts are shown, and global production rates are presented for seven parent volatiles. Carbon monoxide is strongly depleted in comet Lee relative to comets Hyakutake and Hale-Bopp, demonstrating that chemical diversity occurred in the giant


Icarus | 2010

Physical Properties of (2) Pallas

B. Carry; Christophe Dumas; Mikko Kaasalainen; Jerome Berthier; William Jon Merline; Stephane Erard; Al Conrad; Jack D. Drummond; Daniel Hestroffer; Marcello Fulchignoni; Thierry Fusco

We acquired and analyzed adaptive-optics imaging observations of asteroid (2) Pallas from Keck II and the Very Large Telescope taken during four Pallas oppositions between 2003 and 2007, with spatial resolution spanning 32-88 km (image scales 13-20 km/pix). We improve our determination of the size, shape, and pole by a novel method that combines our AO data with 51 visual light-curves spanning 34 years of observations as well as occultation data. The shape model of Pallas derived here reproduces well both the projected shape of Pallas on the sky and light-curve behavior at all the epochs considered. We resolved the pole ambiguity and found the spin-vector coordinates to be within 5 deg. of [long, lat] = [30 deg., -16 deg.] in the ECJ2000.0 reference frame, indicating a high obliquity of ~84 deg., leading to high seasonal contrast. The best triaxial-ellipsoid fit returns radii of a=275 km, b= 258 km, and c= 238 km. From the mass of Pallas determined by gravitational perturbation on other minor bodies [(1.2 +/- 0.3) x 10-10 Solar Masses], we derive a density of 3.4 +/- 0.9 g.cm-3 significantly different from the density of C-type (1) Ceres of 2.2 +/- 0.1 g.cm-3. Considering the spectral similarities of Pallas and Ceres at visible and near-infrared wavelengths, this may point to fundamental differences in the interior composition or structure of these two bodies. We define a planetocentric longitude system for Pallas, following IAU guidelines. We also present the first albedo maps of Pallas covering ~80% of the surface in K-band. These maps reveal features with diameters in the 70-180 km range and an albedo contrast of about 6% with the mean surface albedo.


Interactions | 1998

Through the far looking glass: collaborative remote observing with the W. M. Keck Observatory

Robert I. Kibrick; Al Conrad; Andrew Perala

i n t e r a c t i o n s . . . m a y + j u n e 1 9 9 8 In the past 2 decades, computing science has revolutionized astronomy. The cartoon image of an astronomer squinting through an eyepiece, twiddling dials, and taking photographs is as out of date as a bank of keypunch operators feeding stacks of paper cards into a vacuum-tube computer. Today’s astronomer observes with giant telescopes and state-of-the-art instrumentation controlled by dedicated computer hardware and software. The light he or she gathers from the furthest reaches of the universe is transformed into a digital data stream. Collaborative Remote Observing With the W.M. Keck Observatory Through the Far Looking Glass:


Proceedings of SPIE | 2006

AO operations at the W. M. Keck Observatory

Randall D. Campbell; David Le Mignant; Marcos A. van Dam; Al Conrad; Kenny Grace; Marc Kassis; James Edward Lyke; Hien D. Tran; Jason C. Y. Chin; Elizabeth Chock; Steven Doyle; Robert W. Goodrich; Erik M. Johansson; Tomas Krasuski; Christine Melcher; Douglas M. Summers; Roger C. Sumner; Peter L. Wizinowich

Laser Guide Star Adaptive Optics (LGS AO) has been offered to Keck II visiting astronomers since November 2004. From the few nights of shared-risk science offered at that time, the LGS AO operation effort has grown to supporting over fifty nights of LGS AO per semester. In this paper we describe the new technology required to support LGS AO, give an overview of the operational model, report observing efficiency and discuss the support load required to operate LGS AO. We conclude the paper by sharing lessons learned and the challenges yet to be faced.


Proceedings of SPIE | 2006

LGS AO at W. M. Keck Observatory: routine operations and remaining challenges

David Le Mignant; Marcos A. van Dam; Antonin H. Bouchez; Jason C. Y. Chin; Elizabeth Chock; Randall D. Campbell; Al Conrad; Steve Doyle; Robert W. Goodrich; Erik M. Johansson; Shui H. Kwok; Robert E. Lafon; James Edward Lyke; Christine Melcher; Ronald P. Mouser; Douglas M. Summers; Paul J. Stomski; Cynthia Wilburn; Peter L. Wizinowich

The Laser Guide Star Adaptive Optics (LGS AO) at the W.M. Keck Observatory is the first system of its kind being used to conduct routine science on a ten-meter telescope. In 2005, more than fifty nights of LGSAO science and engineering were carried out using the NIRC2 and OSIRIS science instruments. In this paper, we report on the typical performance and operations of its LGS AO-specific sub-systems (laser, tip-tilt sensor, low-bandwidth wavefront sensor) as well as the overall scientific performance and observing efficiency. We conclude the paper by describing our main performance limitations and present possible developments to overcome them.


arXiv: Instrumentation and Methods for Astrophysics | 2018

MagAO-X: project status and first laboratory results

Jared R. Males; Laird M. Close; Kelsey Miller; Lauren Schatz; Jennifer Lumbres; David S. Doelman; Frans Snik; Olivier Guyon; Justin Knight; Alexander T. Rodack; Katie M. Morzinski; Nemanja Jovanovic; Julien Lozi; Benjamin A. Mazin; Michael J. Ireland; Matthew A. Kenworthy; Christoph U. Keller; Kyle Van Gorkom; Joseph D. Long; Alexander D. Hedglen; Maggie Y. Kautz; Christopher Bohlman; Ewan S. Douglas; Katherine B. Follette; O. Durney; Victor Gasho; Phil Hinz; Madison Jean; J. Noenickx; Dan Alfred

MagAO-X is an entirely new extreme adaptive optics system for the Magellan Clay 6.5 m telescope, funded by the NSF MRI program starting in Sep 2016. The key science goal of MagAO-X is high-contrast imaging of accreting protoplanets at Hα. With 2040 actuators operating at up to 3630 Hz, MagAO-X will deliver high Strehls (> 70%), high resolution (19 mas), and high contrast (< 1 × 10-4 ) at Hα (656 nm). We present an overview of the MagAO-X system, review the system design, and discuss the current project status.


Proceedings of SPIE | 2006

Optimizing interactive performance for long-distance remote observing

Robert I. Kibrick; Steven L. Allen; Al Conrad; Gregory D. Wirth

Remote observing is the dominant mode of operation for both Keck Telescopes and their associated instruments. Over 90% of all Keck observations are carried out remotely from the Keck Headquarters in Waimea, Hawaii (located 40 kilometers from the telescopes on the summit of Mauna Kea), and this year represents the tenth anniversary of the start of Keck remote observing from Waimea. In addition, an increasing number of observations are now conducted by geographically-dispersed observing teams, with some team members working from Waimea while others collaborate from Keck remote observing facilities located in California. Such facilities are now operational on four campuses of the University of California and at the California Institute of Technology. Details of the motivation and planning for those facilities and the software architecture on which they were originally based are discussed in several previous reports. The most recent of those papers reported the results of various measurements of interactive performance as a function of alternative networking protocols (e.g., ssh, X, VNC) and software topologies. This report updates those results to reflect performance improvements that have occurred over the past two years as a result of upgrades to hardware, software, and network configurations at the respective sites. It also explores how the Keck remote observing effort has evolved over the past decade in response to the increased number and diversity of Keck instruments and the growing number of mainland remote observing sites.


Proceedings of SPIE | 2004

Optimizing the use of X and VNC protocols for support of remote observing

Robert I. Kibrick; Steven L. Allen; Al Conrad; Terry Stickel; Gregory D. Wirth

Remote observing is the dominant mode of operation for both Keck Telescopes and their associated instruments. Over 90% of all Keck observations are carried out remotely from the Keck Headquarters in Waimea, Hawaii (located 40 kilometers from the telescopes on the summit of Mauna Kea). In addition, an increasing number of observations are now conducted by geographically-dispersed observing teams, with some team members working from Waimea while others collaborate from Keck remote observing facilities located in California. Such facilities are now operational on the Santa Cruz and San Diego campuses of the University of California, and at the California Institute of Technology in Pasadena. This report describes our use of the X and VNC protocols for providing remote and shared graphical displays to distributed teams of observers and observing assistants located at multiple sites. We describe the results of tests involving both protocols, and explore the limitations and performance of each under different regimes of network bandwidth and latency. We also examine other constraints imposed by differences in the processing performance and bit depth of the various frame buffers used to generate these graphical displays. Other topics covered include the use of ssh tunnels for securely encapsulating both X and VNC protocol streams and the results of tests of ssh compression to improve performance under conditions of limited network bandwidth. We also examine trade-offs between different topologies for locating VNC servers and clients when sharing displays between multiple sites.


Icarus | 2018

Physical, spectral, and dynamical properties of asteroid (107) Camilla and its satellites

Myriam Pajuelo; B. Carry; F. Vachier; M. Marsset; Jerome Berthier; P. Descamps; William Jon Merline; Peter Tamblyn; J. Grice; Al Conrad; Alex Storrs; B. Timerson; D. Dunham; S. Preston; A. Vigan; B. Yang; P. Vernazza; S. Fauvaud; L. Bernasconi; D. Romeuf; R. Behrend; Christophe Dumas; J.D. Drummond; Jean-Luc Margot; P. Kervella; Franck Marchis; J.H. Girard

The population of large 100+ km asteroids is thought to be primordial. As such, they are the most direct witnesses of the early history of our Solar System available. Those among them with satellites allow study of the mass, and hence density and internal structure. We study here the dynamical, physical, and spectral properties of the triple asteroid (107) Camilla from lightcurves, stellar occultations, optical spectroscopy, and high-contrast and high-angular-resolution images and spectro-images. Using 80 positions measured over 15 years, we determine the orbit of its larger satellite, S/2001 (107) 1, to be circular, equatorial, and prograde, with root-mean-square residuals of 7.8 mas, corresponding to a sub-pixel accuracy. From 11 positions spread over three epochs only, in 2015 and 2016, we determine a preliminary orbit for the second satellite S/2016 (107) 1. We find the orbit to be somewhat eccentric and slightly inclined to the primary’s equatorial plane, reminiscent of the properties of inner satellites of other asteroid triple systems. Comparison of the near-infrared spectrum of the larger satellite reveals no significant difference with Camilla. Hence, both dynamical and surface properties argue for a formation of the satellites by excavation from impact and re-accumulation of ejecta in orbit. We determine the spin and 3-D shape of Camilla. The model fits well each data set: lightcurves, adaptive-optics images, and stellar occultations. We determine Camilla to be larger than reported from modeling of mid-infrared photometry, with a spherical-volume-equivalent diameter of 254 ± 36 km (3σuncertainty), in agreement with recent results from shape modeling (Hanus et al., 2017, A&A 601). Combining the mass of (1.12 ± 0.01) × 10^(19) kg (3σ uncertainty) determined from the dynamics of the satellites and the volume from the 3-D shape model, we determine a density of 1,280 ± 130 kg · m^(−3) (3 σ uncertainty). From this density, and considering Camilla’s spectral similarities with (24) Themis and (65) Cybele (for which water ice coating on surface grains was reported), we infer a silicate-to-ice mass ratio of 1–6, with a 10–30% macroporosity.

Collaboration


Dive into the Al Conrad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Carry

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Imke de Pater

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Jon Merline

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christophe Dumas

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge