Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alaguraj Veluchamy is active.

Publication


Featured researches published by Alaguraj Veluchamy.


eLife | 2015

Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

Yong H. Woo; Hifzur Rahman Ansari; Thomas D. Otto; Christen M. Klinger; Martin Kolisko; Jan Michálek; Alka Saxena; Dhanasekaran Shanmugam; Annageldi Tayyrov; Alaguraj Veluchamy; Shahjahan Ali; Axel Bernal; Javier Campo; Jaromír Cihlář; Pavel Flegontov; Sebastian G. Gornik; Eva Hajdušková; Aleš Horák; Jan Janouškovec; Nicholas J. Katris; Fred D. Mast; Diego Miranda-Saavedra; Tobias Mourier; Raeece Naeem; Mridul Nair; Aswini K. Panigrahi; Neil D. Rawlings; Eriko Padron-Regalado; Abhinay Ramaprasad; Nadira Samad

The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. DOI: http://dx.doi.org/10.7554/eLife.06974.001


Proceedings of the National Academy of Sciences of the United States of America | 2016

Insights into global diatom distribution and diversity in the world’s ocean

Shruti Malviya; Eleonora Scalco; Stéphane Audic; Flora Vincent; Alaguraj Veluchamy; Julie Poulain; Patrick Wincker; Daniele Iudicone; Colomban de Vargas; Lucie Bittner; Adriana Zingone; Chris Bowler

Significance Diatoms, considered one of the most diverse and ecologically important phytoplanktonic groups, contribute around 20% of global primary productivity. They are particularly abundant in nutrient-rich coastal ecosystems and at high latitudes. Here, we have explored the dataset generated by Tara Oceans from a wide range of oceanic regions to characterize diatom diversity patterns on a global scale. We confirm the dominance of diatoms as a major photosynthetic group and identify the most widespread and diverse genera. We also provide a new estimate of marine planktonic diatom diversity and a global view of their distribution in the world’s ocean. Diatoms (Bacillariophyta) constitute one of the most diverse and ecologically important groups of phytoplankton. They are considered to be particularly important in nutrient-rich coastal ecosystems and at high latitudes, but considerably less so in the oligotrophic open ocean. The Tara Oceans circumnavigation collected samples from a wide range of oceanic regions using a standardized sampling procedure. Here, a total of ∼12 million diatom V9-18S ribosomal DNA (rDNA) ribotypes, derived from 293 size-fractionated plankton communities collected at 46 sampling sites across the global ocean euphotic zone, have been analyzed to explore diatom global diversity and community composition. We provide a new estimate of diversity of marine planktonic diatoms at 4,748 operational taxonomic units (OTUs). Based on the total assigned ribotypes, Chaetoceros was the most abundant and diverse genus, followed by Fragilariopsis, Thalassiosira, and Corethron. We found only a few cosmopolitan ribotypes displaying an even distribution across stations and high abundance, many of which could not be assigned with confidence to any known genus. Three distinct communities from South Pacific, Mediterranean, and Southern Ocean waters were identified that share a substantial percentage of ribotypes within them. Sudden drops in diversity were observed at Cape Agulhas, which separates the Indian and Atlantic Oceans, and across the Drake Passage between the Atlantic and Southern Oceans, indicating the importance of these ocean circulation choke points in constraining diatom distribution and diversity. We also observed high diatom diversity in the open ocean, suggesting that diatoms may be more relevant in these oceanic systems than generally considered.


Nature | 2017

Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus

Thomas Mock; Robert Otillar; Jan Strauss; Mark McMullan; Pirita Paajanen; Jeremy Schmutz; Asaf Salamov; Remo Sanges; Andrew Toseland; Ben J. Ward; Andrew E. Allen; Christopher L. Dupont; Stephan Frickenhaus; Florian Maumus; Alaguraj Veluchamy; Taoyang Wu; Kerrie Barry; Angela Falciatore; Maria Immacolata Ferrante; Antonio Emidio Fortunato; Gernot Glöckner; Ansgar Gruber; Rachel Hipkin; Michael G. Janech; Peter G. Kroth; Florian Leese; Erika Lindquist; Barbara R. Lyon; Joel W. Martin; Christoph Mayer

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.


The Plant Cell | 2015

Oil Accumulation by the Oleaginous Diatom Fistulifera solaris as Revealed by the Genome and Transcriptome

Tsuyoshi Tanaka; Yoshiaki Maeda; Alaguraj Veluchamy; Michihiro Tanaka; Heni Abida; Eric Maréchal; Chris Bowler; Masaki Muto; Yoshihiko Sunaga; Masayoshi Tanaka; Tomoko Yoshino; Takeaki Taniguchi; Yorikane Fukuda; Michiko Nemoto; Mitsufumi Matsumoto; Sachiyo Aburatani; Wataru Fujibuchi

F. solaris has an allodiploid genome structure, and activation of lipid accumulation and degradation metabolism pathways at the same time might underlie its simultaneous growth and oil accumulation. Oleaginous photosynthetic organisms such as microalgae are promising sources for biofuel production through the generation of carbon-neutral sustainable energy. However, the metabolic mechanisms driving high-rate lipid production in these oleaginous organisms remain unclear, thus impeding efforts to improve productivity through genetic modifications. We analyzed the genome and transcriptome of the oleaginous diatom Fistulifera solaris JPCC DA0580. Next-generation sequencing technology provided evidence of an allodiploid genome structure, suggesting unorthodox molecular evolutionary and genetic regulatory systems for reinforcing metabolic efficiencies. Although major metabolic pathways were shared with nonoleaginous diatoms, transcriptome analysis revealed unique expression patterns, such as concomitant upregulation of fatty acid/triacylglycerol biosynthesis and fatty acid degradation (β-oxidation) in concert with ATP production. This peculiar pattern of gene expression may account for the simultaneous growth and oil accumulation phenotype and may inspire novel biofuel production technology based on this oleaginous microalga.


Nature Communications | 2013

Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum

Alaguraj Veluchamy; Xin Lin; Florian Maumus; Máximo Rivarola; Jaysheel Bhavsar; Todd Creasy; Kimberly O’Brien; Naomi Sengamalay; Luke J. Tallon; Andrew D. Smith; Edda Rayko; Ikhlak Ahmed; Stéphane Le Crom; Gregory K. Farrant; Jean-Yves Sgro; Sue A. Olson; Sandra Splinter BonDurant; Andrew E. Allen; Pablo D. Rabinowicz; Michael R. Sussman; Chris Bowler; Leila Tirichine

DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.


Current Biology | 2015

A Novel Protein, Ubiquitous in Marine Phytoplankton, Concentrates Iron at the Cell Surface and Facilitates Uptake

Joe Morrissey; Robert Sutak; Javier Paz-Yepes; Atsuko Tanaka; Ahmed Moustafa; Alaguraj Veluchamy; Yann Thomas; Hugo Botebol; François-Yves Bouget; Jeffrey B. McQuaid; Leila Tirichine; Andrew E. Allen; Emmanuel Lesuisse; Chris Bowler

Numerous cellular functions including respiration require iron. Plants and phytoplankton must also maintain the iron-rich photosynthetic electron transport chain, which most likely evolved in the iron-replete reducing environments of the Proterozoic ocean [1]. Iron bioavailability has drastically decreased in the contemporary ocean [1], most likely selecting for the evolution of efficient iron acquisition mechanisms among modern phytoplankton. Mesoscale iron fertilization experiments often result in blooms dominated by diatoms [2], indicating that diatoms have adaptations that allow survival in iron-limited waters and rapid multiplication when iron becomes available. Yet the genetic and molecular bases are unclear, as very few iron uptake genes have been functionally characterized from marine eukaryotic phytoplankton, and large portions of diatom iron starvation transcriptomes are genes encoding unknown functions [3-5]. Here we show that the marine diatom Phaeodactylum tricornutum utilizes ISIP2a to concentrate Fe(III) at the cell surface as part of a novel, copper-independent and thermodynamically controlled iron uptake system. ISIP2a is expressed in response to iron limitation several days prior to the induction of ferrireductase activity, and it facilitates significant Fe(III) uptake during the initial response to Fe limitation. ISIP2a is able to directly bind Fe(III) and increase iron uptake when heterologously expressed, whereas knockdown of ISIP2a in P. tricornutum decreases iron uptake, resulting in impaired growth and chlorosis during iron limitation. ISIP2a is expressed by diverse marine phytoplankton, indicating that it is an ecologically significant adaptation to the unique nutrient composition of marine environments.


Genome Biology | 2015

An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum

Alaguraj Veluchamy; Achal Rastogi; Xin Lin; Bérangère Lombard; Omer Murik; Yann Thomas; Florent Dingli; Máximo Rivarola; Sandra Ott; Xinyue Liu; Yezhou Sun; Pablo D. Rabinowicz; James McCarthy; Andrew E. Allen; Damarys Loew; Chris Bowler; Leila Tirichine

BackgroundNucleosomes are the building blocks of chromatin where gene regulation takes place. Chromatin landscapes have been profiled for several species, providing insights into the fundamental mechanisms of chromatin-mediated transcriptional regulation of gene expression. However, knowledge is missing for several major and deep-branching eukaryotic groups, such as the Stramenopiles, which include the diatoms. Diatoms are highly diverse and ubiquitous species of phytoplankton that play a key role in global biogeochemical cycles. Dissecting chromatin-mediated regulation of genes in diatoms will help understand the ecological success of these organisms in contemporary oceans.ResultsHere, we use high resolution mass spectrometry to identify a full repertoire of post-translational modifications on histones of the marine diatom Phaeodactylum tricornutum, including eight novel modifications. We map five histone marks coupled with expression data and show that P. tricornutum displays both unique and broadly conserved chromatin features, reflecting the chimeric nature of its genome. Combinatorial analysis of histone marks and DNA methylation demonstrates the presence of an epigenetic code defining activating or repressive chromatin states. We further profile three specific histone marks under conditions of nitrate depletion and show that the histone code is dynamic and targets specific sets of genes.ConclusionsThis study is the first genome-wide characterization of the histone code from a stramenopile and a marine phytoplankton. The work represents an important initial step for understanding the evolutionary history of chromatin and how epigenetic modifications affect gene expression in response to environmental cues in marine environments.


The ISME Journal | 2016

Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages.

Magali Lescot; Pascal Hingamp; Kenji K. Kojima; Emilie Villar; Sarah Romac; Alaguraj Veluchamy; Martine Boccara; Olivier Jaillon; Daniele Iudicone; Chris Bowler; Patrick Wincker; Jean-Michel Claverie; Hiroyuki Ogata

Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.


bioRxiv | 2017

Continuous gene flow contributes to low global species abundance and distribution of a marine model diatom

Achal Rastogi; Anne-Flore Deton-Cabanillas; Fabio Rocha Jimenez Vieira; Alaguraj Veluchamy; Catherine Cantrel; Gaohong Wang; Pieter Vanormelingen; Chris Bowler; Gwenael Piganeau; Leila Tirichine; Hanhua Hu

Unlike terrestrial ecosystems where geographical isolation often leads to a restricted gene flow between species, genetic admixing in aquatic micro-eukaryotes is likely to be frequent. Diatoms inhabit marine ecosystems since the Mesozoic period and presently constitute one of the major primary producers in the world ocean. They are a highly diversified group of eukaryotic phytoplankton with estimates of up to 200,000 species. Since decades, Phaeodactylum tricornutum is used as a model diatom species to characterize the functional pathways, physiology and evolution of diatoms in general. In the current study, using whole genome sequencing of ten P. tricornutum strains, sampled at broad geospatial and temporal scales, we show a continuous dispersal and genetic admixing between geographically isolated strains. We also describe a very high level of heterozygosity and propose it to be a consequence of frequent ancestral admixture. Our finding that P. tricornutum sequences are plausibly detectable at low but broadly distributed levels in the world ocean further suggests that high admixing between geographically isolated strains may create a significant bottleneck, thus influencing their global abundance and distribution in nature. Finally, in an attempt to understand the functional implications of genetic diversity between different P. tricornutum ecotypes, we show the effects of domestication in inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success.Diatoms emerged in the Mesozoic period and presently constitute one of the main primary producers in the world’s ocean and are of a major economic importance. In the current study, using whole genome sequencing of ten accessions of the model diatom Phaeodactylum tricornutum, sampled at broad geospatial and temporal scales, we draw a comprehensive landscape of the genomic diversity within the species. We describe strong genetic subdivisions of the accessions into four genetic clades (A-D) with constituent populations of each clade possessing a conserved genetic and functional makeup, likely a consequence of the limited dispersal of P. tricornutum in the open ocean. We further suggest dominance of asexual reproduction across all the populations, as implied by high linkage disequilibrium. Finally, we show limited yet compelling signatures of genetic and functional convergence inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success and impact on aquatic ecosystems where they play a major role. Our work provides valuable resources for functional genomics and for exploiting the biotechnological potential of this model diatom species.


Archive | 2017

Evolutionary genomics of a cold-adapted diatom: Fragilariopsis cylindrus

Thomas Mock; Robert Otillar; Jan Strauss; Mark McMullan; Pirita Paajanen; Jeremy Schmutz; Asaf Salamov; Remo Sanges; Andrew Toseland; Ben J. Ward; Andrew E. Allen; Christopher L. Dupont; Stephan Frickenhaus; Florian Maumus; Alaguraj Veluchamy; Taoyang Wu; Kerrie Barry; Angela Falciatore; Maria Immacolata Ferrante; Antonio Emidio Fortunato; Gernot Glöckner; Ansgar Gruber; Rachel Hipkin; Michael G. Janech; Peter G. Kroth; Florian Leese; Erika Lindquist; Barbara R. Lyon; Joel W. Martin; Christoph Mayer

Collaboration


Dive into the Alaguraj Veluchamy's collaboration.

Top Co-Authors

Avatar

Chris Bowler

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Allen

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Leila Tirichine

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Florian Maumus

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Xin Lin

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Achal Rastogi

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edda Rayko

École Normale Supérieure

View shared research outputs
Researchain Logo
Decentralizing Knowledge