Edda Rayko
École Normale Supérieure
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edda Rayko.
Nature | 2008
Chris Bowler; Andrew E. Allen; Jonathan H. Badger; Jane Grimwood; Kamel Jabbari; Alan Kuo; Uma Maheswari; Cindy Martens; Florian Maumus; Robert Otillar; Edda Rayko; Asaf Salamov; Klaas Vandepoele; Bank Beszteri; Ansgar Gruber; Marc Heijde; Michael Katinka; Thomas Mock; Klaus Valentin; Frederic Verret; John A. Berges; Colin Brownlee; Jean-Paul Cadoret; Chang Jae Choi; Sacha Coesel; Alessandra De Martino; J. Chris Detter; Colleen Durkin; Angela Falciatore; Jérome Fournet
Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (∼40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.
Genome Biology | 2010
Marie Jj Huysman; Cindy Martens; Klaas Vandepoele; Jeroen Gillard; Edda Rayko; Marc Heijde; Chris Bowler; Dirk Inzé; Yves Van de Peer; Lieven De Veylder; Wim Vyverman
BackgroundDespite the enormous importance of diatoms in aquatic ecosystems and their broad industrial potential, little is known about their life cycle control. Diatoms typically inhabit rapidly changing and unstable environments, suggesting that cell cycle regulation in diatoms must have evolved to adequately integrate various environmental signals. The recent genome sequencing of Thalassiosira pseudonana and Phaeodactylum tricornutum allows us to explore the molecular conservation of cell cycle regulation in diatoms.ResultsBy profile-based annotation of cell cycle genes, counterparts of conserved as well as new regulators were identified in T. pseudonana and P. tricornutum. In particular, the cyclin gene family was found to be expanded extensively compared to that of other eukaryotes and a novel type of cyclins was discovered, the diatom-specific cyclins. We established a synchronization method for P. tricornutum that enabled assignment of the different annotated genes to specific cell cycle phase transitions. The diatom-specific cyclins are predominantly expressed at the G1-to-S transition and some respond to phosphate availability, hinting at a role in connecting cell division to environmental stimuli.ConclusionThe discovery of highly conserved and new cell cycle regulators suggests the evolution of unique control mechanisms for diatom cell division, probably contributing to their ability to adapt and survive under highly fluctuating environmental conditions.
New Phytologist | 2010
Edda Rayko; Florian Maumus; Uma Maheswari; Kamel Jabbari; Chris Bowler
• By comparative analyses we identify lineage-specific diversity in transcription factors (TFs) from stramenopile (or heterokont) genome sequences. We compared a pennate (Phaeodactylum tricornutum) and a centric diatom (Thalassiosira pseudonana) with those of other stramenopiles (oomycetes, Pelagophyceae, and Phaeophyceae (Ectocarpus siliculosus)) as well as to that of Emiliania huxleyi, a haptophyte that is evolutionarily related to the stramenopiles. • We provide a detailed description of diatom TF complements and report numerous peculiarities: in both diatoms, the heat shock factor (HSF) family is overamplified and constitutes the most abundant class of TFs; Myb and C2H2-type zinc finger TFs are the two most abundant TF families encoded in all the other stramenopile genomes investigated; the presence of diatom and lineage-specific gene fusions, in particular a class of putative photoreceptors with light-sensitive Per-Arnt-Sim (PAS) and DNA-binding (basic-leucine zipper, bZIP) domains and an HSF-AP2 domain fusion. • Expression data analysis shows that many of the TFs studied are transcribed and may be involved in specific responses to environmental stimuli. • Evolutionary and functional relevance of these observations are discussed.
Nature Communications | 2013
Alaguraj Veluchamy; Xin Lin; Florian Maumus; Máximo Rivarola; Jaysheel Bhavsar; Todd Creasy; Kimberly O’Brien; Naomi Sengamalay; Luke J. Tallon; Andrew D. Smith; Edda Rayko; Ikhlak Ahmed; Stéphane Le Crom; Gregory K. Farrant; Jean-Yves Sgro; Sue A. Olson; Sandra Splinter BonDurant; Andrew E. Allen; Pablo D. Rabinowicz; Michael R. Sussman; Chris Bowler; Leila Tirichine
DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.
Gene | 2003
Kamel Jabbari; Edda Rayko; Giorgio Bernardi
Journal Name: Nature, na, na, November 13, 2008, pp. 239-244 | 2011
Susan Lucas; Igor V. Grigoriev; Chris Bowler; Andrew E. Allen; Jonathan H. Badger; Jane Grimwood; Kamel Jabbari; Alan Kuo; Uma Maheswari; Cindy Martens; Florian Maumus; Robert Otillar; Edda Rayko; Asaf Salamov; Klaas Vandepoele; Bank Beszteri; Ansgar Gruber; Marc Heijde; Michael Katinka; Thomas Mock; Klaus Valentin; Frederic Verret; John A. Berges; Colin Brownlee; Jean-Paul Cadoret; A Chivoitti; Cindy Choi; Sacha Coesel; A De Martino; Chris Detter
Gene | 2006
Edda Rayko; Kamel Jabbari; Giorgio Bernardi
eLS | 2007
Kamel Jabbari; Edda Rayko
Nature Communications | 2014
Alaguraj Veluchamy; Xin Lin; Florian Maumus; Máximo Rivarola; Jaysheel Bhavsar; Todd Creasy; Kimberly O’Brien; Naomi Sengamalay; Luke J. Tallon; Andrew D. Smith; Edda Rayko; Ikhlak Ahmed; Stéphane Le Crom; Gregory K. Farrant; Jean-Yves Sgro; Sue A. Olson; Sandra Splinter BonDurant; Andrew E. Allen; Pablo D. Rabinowicz; Michael R. Sussman; Chris Bowler; Leila Tirichine
Archive | 2010
Marie Jj Huysman; Cindy Martens; Klaas Vandepoele; Jeroen Gillard; Edda Rayko; Marc Heijde; Chris Bowler; Dirk Inzé; Yves Van de Peer; Lieven De Veylder; Wim Vyverman