Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alain Debrabant is active.

Publication


Featured researches published by Alain Debrabant.


Science | 2008

In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies.

Nathan C. Peters; Jackson G. Egen; Nagila Secundino; Alain Debrabant; Nicola Kimblin; Shaden Kamhawi; Phillip G. Lawyer; Michael P. Fay; Ronald N. Germain; David L. Sacks

Infection with the obligate intracellular protozoan Leishmania is thought to be initiated by direct parasitization of macrophages, but the early events following transmission to the skin by vector sand flies have been difficult to examine directly. Using dynamic intravital microscopy and flow cytometry, we observed a rapid and sustained neutrophilic infiltrate at localized sand fly bite sites. Invading neutrophils efficiently captured Leishmania major (L.m.) parasites early after sand fly transmission or needle inoculation, but phagocytosed L.m. remained viable and infected neutrophils efficiently initiated infection. Furthermore, neutrophil depletion reduced, rather than enhanced, the ability of parasites to establish productive infections. Thus, L.m. appears to have evolved to both evade and exploit the innate host response to sand fly bite in order to establish and promote disease.


Cell Death & Differentiation | 2002

Programmed cell death in the unicellular protozoan parasite Leishmania

Nancy Lee; Sylvie Bertholet; Alain Debrabant; Jacqueline Muller; Robert Duncan; Hira L. Nakhasi

In the present study we have demonstrated some features characterizing programmed cell death (PCD) in the unicellular protozoan parasite Leishmania donovani, the causative agent of visceral Leishmaniasis. We report that PCD is initiated in stationary phase cultures of promastigotes and both in actively growing cultures of axenic amastigotes and promastigotes upon treatment with anti Leishmanial drugs (Pentostam and amphotericin B). However, the two cell types respond to antileishmanial drugs differently. The features of PCD in L. donovani promastigotes are nuclear condensation, nicked DNA in the nucleus, DNA ladder formation, increase in plasma membrane permeability, decrease in the mitochondrial membrane potential (ΔΨm) and induction of a PhiPhiLux (PPL)-cleavage activity. PCD in both stationary phase culture and upon induction by amphotericin B resulted first in the decrease of mitochondrial membrane potential followed by simultaneous change in plasma membrane permeability and induction of PPL-cleavage activity. Of the total PPL-cleavage activity, several caspase inhibitors inhibited a significant amount (21–34%). Inhibitors of cathepsin or calpain did not inhibit PPL-cleavage activity. Taken together this study demonstrates that the characteristic features of PCD exist in unicellular protozoan Leishmania donovani. The implication of PCD on the Leishmania pathogenesis is discussed.


International Journal for Parasitology | 2003

Programmed cell death in trypanosomatids and other unicellular organisms

Alain Debrabant; Nancy Lee; Sylvie Bertholet; Robert Duncan; Hira L. Nakhasi

In multicellular organisms, cellular growth and development can be controlled by programmed cell death (PCD), which is defined by a sequence of regulated events. However, PCD is thought to have evolved not only to regulate growth and development in multicellular organisms but also to have a functional role in the biology of unicellular organisms. In protozoan parasites and in other unicellular organisms, features of PCD similar to those in multicellular organisms have been reported, suggesting some commonality in the PCD pathway between unicellular and multicellular organisms. However, more extensive studies are needed to fully characterise the PCD pathway and to define the factors that control PCD in the unicellular organisms. The understanding of the PCD pathway in unicellular organisms could delineate the evolutionary origin of this pathway. Further characterisation of the PCD pathway in the unicellular parasites could provide information regarding their pathogenesis, which could be exploited to target new drugs to limit their growth and treat the disease they cause.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies

Nicola Kimblin; Nathan C. Peters; Alain Debrabant; Nagila Secundino; Jackson G. Egen; Phillip G. Lawyer; Michael P. Fay; Shaden Kamhawi; David L. Sacks

Leishmaniasis is transmitted between mammalian hosts by the bites of bloodsucking vector sand flies. The dose of parasites transmitted to the mammalian host has never been directly determined. We developed a real-time PCR-based method to determine the number of Leishmania major parasites inoculated into the ears of living mice during feeding by individual infected flies (Phlebotomus duboscqi). The number of parasites transmitted varied over a wide range in the 58 ears in which Leishmania were detected and demonstrated a clear bimodal distribution. Most of the infected mice were inoculated with a low dose of <600 parasites. One in four received a higher dose of >1,000 and up to 100,000 cells. High-dose transmission was associated with a heavy midgut infection of >30,000 parasites, incomplete blood feeding, and transmission of a high percentage of the parasite load in the fly. To test the impact of inoculum size on infection outcome, we compared representative high- (5,000) and low- (100) dose intradermal needle infections in the ears of C57BL/6 mice. To mimic natural transmission, we used sand fly-derived metacyclic forms of L. major and preexposed the injection site to the bites of uninfected flies. Large lesions developed rapidly in the ears of mice receiving the high-dose inoculum. The low dose resulted in only minor pathology but a higher parasite titer in the chronic phase, and it established the host as an efficient long-term reservoir of infection back to vector sand flies.


PLOS Pathogens | 2012

Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response

Flávia L. Ribeiro-Gomes; Nathan C. Peters; Alain Debrabant; David L. Sacks

Neutrophils and dendritic cells (DCs) converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4+ T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved.


Eukaryotic Cell | 2007

Characterization of metacaspases with trypsin-like activity and their putative role in programmed cell death in the protozoan parasite Leishmania.

Nancy Lee; Sreenivas Gannavaram; Angamuthu Selvapandiyan; Alain Debrabant

ABSTRACT In this report, we have characterized two metacaspases of Leishmania donovani, L. donovani metacaspase-1 (LdMC1) and LdMC2. These two proteins show 98% homology with each other, and both contain a characteristic C-terminal proline-rich domain. Both genes are transcribed in promastigotes and axenic amastigotes of L. donovani; however, LdMC1 shows increased mRNA levels in axenic amastigotes. An anti-LdMC antibody was obtained and showed reactivity with a single ∼42-kDa protein band in both promastigote and axenic amastigote parasite whole-cell lysates by Western blotting. Pulse-chase experiments suggest that LdMCs are not synthesized as proenzymes, and immunofluorescence studies show that LdMCs are associated with the acidocalcisome compartments of L. donovani. Enzymatic assays of immunoprecipitated LdMCs show that native LdMCs efficiently cleave trypsin substrates and are unable to cleave caspase-specific substrates. Consistently, LdMC activity is insensitive to caspase inhibitors and is efficiently inhibited by trypsin inhibitors, such as leupeptin, antipain, and Nα-tosyl-l-lysine-chloromethyl ketone (TLCK). In addition, our results show that LdMC activity was induced in parasites treated with hydrogen peroxide, a known trigger of programmed cell death (PCD) in Leishmania and that parasites overexpressing metacaspases are more sensitive to hydrogen peroxide-induced PCD. These findings suggest that Leishmania metacaspases are not responsible for the caspase-like activities reported in this organism and suggest a possible role for LdMCs as effector molecules in Leishmania PCD.


Journal of Immunology | 2006

Leishmania Antigens Are Presented to CD8+ T Cells by a Transporter Associated with Antigen Processing-Independent Pathway In Vitro and In Vivo

Sylvie Bertholet; Romina S. Goldszmid; Alexandre Morrot; Alain Debrabant; Farhat Afrin; Carmen M. Collazo-Custodio; Mathieu Houde; Michel Desjardins; Alan Sher; David L. Sacks

CD8+ T cells are generated in response to Leishmania major (Lm) or Toxoplasma gondii parasitic infections, indicating that exogenously delivered Ag can be processed for presentation by MHC class I molecules. We show that presentation of Lm nucleotidase (NT)-OVA is TAP independent in vivo and in vitro, and is inhibited by chloroquine, but not by proteasome inhibitors. In contrast, the presentation of T. gondii P30-OVA relies on the TAP/proteasome pathway. Presentation of OVA- or rNT-OVA-coated beads also bypassed TAP requirement above a certain Ag threshold. TAP was also dispensable for the presentation of wild-type Lm Ags to primed CD8+ T cells in vitro. Finally, in vivo priming of CD8+ T cells involved in acquired resistance to Lm was not compromised in TAP-deficient mice. Thus, Leishmania Ags appear to be confined to an intraphagosomal processing pathway that requires higher concentrations of Ags, suggesting that these parasites may have evolved strategies to impair the efficient endoplasmic reticulum-based, TAP-dependent cross-presentation pathway to avoid or delay CD8+ T cell priming.


Journal of Cell Science | 2008

Conservation of the pro-apoptotic nuclease activity of endonuclease G in unicellular trypanosomatid parasites.

Sreenivas Gannavaram; Chetan Vedvyas; Alain Debrabant

Endonuclease G is a mitochondrial protein implicated in DNA fragmentation during apoptosis in cell types ranging from fungi to mammals. Features of programmed cell death have been reported in a number of single-celled organisms, including the human trypanosomatid parasites Leishmania and Trypanosoma. However, the protozoan cell death pathways and the effector molecules involved in such processes remain to be identified. In this report, we describe the pro-apoptotic function of endonuclease G in trypanosomatid parasites. Similar to metazoans, trypanosome endoG showed intrinsic nuclease activity, is localized in mitochondria and is released from this organelle when cell death is triggered. Overexpression of endoG strongly promoted apoptotic cell death under oxidant or differentiation-related stress in Leishmania and, conversely, loss of endoG expression conferred robust resistance to oxidant-induced cell death in T. brucei. These data demonstrate the conservation of the pro-apoptotic endonuclease activity of endoG in these evolutionarily ancient eukaryotic organisms. Furthermore, nuclear DNA degradation by endoG upon release from mitochondria might represent a caspase-independent cell death mechanism in trypanosomatid parasites as genes encoding caspase-like proteins have not been identified in their genomes.


Traffic | 2001

Secretory and Endocytic Pathways Converge in a Dynamic Endosomal System in a Primitive Protozoan

Elodie Ghedin; Alain Debrabant; Juan C. Engel; Dennis M. Dwyer

Leishmania are a group of primitive eukaryotic trypanosomatid protozoa that are apically polarized with a flagellum at their anterior end. Surrounding the base of the flagellum is the flagellar reservoir that constitutes the site for endocytosis and exocytosis in these organisms. In the present study, we define a novel multivesicular tubular compartment involved in the intracellular trafficking of macromolecules in Leishmania. This dynamic structure appears to subtend the flagellar reservoir and extends towards the posterior end of the cell. Functional domains of several surface‐expressed proteins, such as the gp63 glycosyl phosphatidyl inositol anchor and the 3′nucleotidase/nuclease transmembrane domain were fused to green fluorescent protein. These chimeric proteins were found to traffic through the secretory pathway and, while reaching their intended destinations, also accumulated within the intracellular tubular compartment. Using various compounds that are efficient fluid‐phase markers used to track endocytosis in higher eukaryotes, we showed that this tubular compartment constitutes an important station in the endocytic pathway of these cells. Based on our functional observations of its role in the trafficking of expressed proteins and endocytosed markers, this compartment appears to have properties similar to endosomes of higher eukaryotes.


Journal of Biological Chemistry | 2001

Expression of a Mutant Form of Leishmania donovani Centrin Reduces the Growth of the Parasite

Angamuthu Selvapandiyan; Robert Duncan; Alain Debrabant; Sylvie Bertholet; G. Sreenivas; Narender Singh Negi; Poonam Salotra; Hira L. Nakhasi

Leishmania donovani, a protozoan parasite, causes visceral disease in humans. To identify genes that control growth, we have isolated for the first time in the order Kinetoplastida a gene encoding for centrin from L. donovani. Centrin is a calcium-binding cytoskeletal protein essential for centrosome duplication or segregation. Protein sequence similarity and immunoreactivity confirmed that Leishmaniacentrin is a homolog of human centrin 2. Immunofluorescence analysis localized the protein in the basal body. Calcium binding analysis revealed that its C-terminal Ca2+ binding domain binds 16-fold more calcium than the N-terminal domain. Electrophoretic mobility shift of centrin treated with EGTA and abrogation of the shift in its mutants lacking a Ca2+ binding site suggest that Ca2+ binding to these regions may have a role in the protein conformation. The levels of centrin mRNA and protein were high during the exponential growth of the parasite in culture and declined to a low level in the stationary phase. Expression of N-terminal-deleted centrin in the parasite significantly reduces its growth rate, and it was found that significantly more cells are arrested in the G2/M stage than in control cells. These studies indicate that centrin may have a functional role inLeishmania growth.

Collaboration


Dive into the Alain Debrabant's collaboration.

Top Co-Authors

Avatar

Hira L. Nakhasi

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Dennis M. Dwyer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David L. Sacks

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nancy Lee

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Robert Duncan

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Nathan C. Peters

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sreenivas Gannavaram

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Sylvie Bertholet

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mat Yamage

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge