Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alain Dedieu.
PLOS Genetics | 2009
Arjan de Groot; Rémi Dulermo; Philippe Ortet; Laurence Blanchard; Philippe J Guerin; Bernard Fernandez; Benoit Vacherie; Carole Dossat; Edmond Jolivet; Patricia Siguier; Michael Chandler; Mohamed Barakat; Alain Dedieu; Valérie Barbe; Thierry Heulin; Suzanne Sommer; Wafa Achouak; Jean Armengaud
To better understand adaptation to harsh conditions encountered in hot arid deserts, we report the first complete genome sequence and proteome analysis of a bacterium, Deinococcus deserti VCD115, isolated from Sahara surface sand. Its genome consists of a 2.8-Mb chromosome and three large plasmids of 324 kb, 314 kb, and 396 kb. Accurate primary genome annotation of its 3,455 genes was guided by extensive proteome shotgun analysis. From the large corpus of MS/MS spectra recorded, 1,348 proteins were uncovered and semiquantified by spectral counting. Among the highly detected proteins are several orphans and Deinococcus-specific proteins of unknown function. The alliance of proteomics and genomics high-throughput techniques allowed identification of 15 unpredicted genes and, surprisingly, reversal of incorrectly predicted orientation of 11 genes. Reversal of orientation of two Deinococcus-specific radiation-induced genes, ddrC and ddrH, and identification in D. deserti of supplementary genes involved in manganese import extend our knowledge of the radiotolerance toolbox of Deinococcaceae. Additional genes involved in nutrient import and in DNA repair (i.e., two extra recA, three translesion DNA polymerases, a photolyase) were also identified and found to be expressed under standard growth conditions, and, for these DNA repair genes, after exposure of the cells to UV. The supplementary nutrient import and DNA repair genes are likely important for survival and adaptation of D. deserti to its nutrient-poor, dry, and UV-exposed extreme environment.
Molecular & Cellular Proteomics | 2010
Mathieu Baudet; Philippe Ortet; Jean-Charles Gaillard; Bernard Fernandez; Philippe J Guerin; Christine Enjalbal; Gilles Subra; Arjan de Groot; Mohamed Barakat; Alain Dedieu; Jean Armengaud
Deinococcaceae are a family of extremely radiation-tolerant bacteria that are currently subjected to numerous studies aimed at understanding the molecular mechanisms for such radiotolerance. To achieve a comprehensive and accurate annotation of the Deinococcus deserti genome, we performed an N terminus-oriented characterization of its proteome. For this, we used a labeling reagent, N-tris(2,4,6-trimethoxyphenyl)phosphonium acetyl succinimide, to selectively derivatize protein N termini. The large scale identification of N-tris(2,4,6-trimethoxyphenyl)phosphonium acetyl succinimide-modified N-terminal-most peptides by shotgun liquid chromatography-tandem mass spectrometry analysis led to the validation of 278 and the correction of 73 translation initiation codons in the D. deserti genome. In addition, four new genes were detected, three located on the main chromosome and one on plasmid P3. We also analyzed signal peptide cleavages on a genome-wide scale. Based on comparative proteogenomics analysis, we propose a set of 137 corrections to improve Deinococcus radiodurans and Deinococcus geothermalis gene annotations. Some of these corrections affect important genes involved in DNA repair mechanisms such as polA, ligA, and ddrB. Surprisingly, experimental evidences were obtained indicating that DnaA (the protein involved in the DNA replication initiation process) and RpsL (the S12 ribosomal conserved protein) translation is initiated in Deinococcaceae from non-canonical codons (ATC and CTG, respectively). Such use may be the basis of specific regulation mechanisms affecting replication and translation. We also report the use of non-conventional translation initiation codons for two other genes: Deide_03051 and infC. Whether such use of non-canonical translation initiation codons is much more frequent than for other previously reported bacterial phyla or restricted to Deinococcaceae remains to be investigated. Our results demonstrate that predicting translation initiation codons is still difficult for some bacteria and that proteomics-based refinement of genome annotations may be helpful in such cases.
Journal of Biological Chemistry | 2011
Alain Dedieu; Jean-Charles Gaillard; Thierry Pourcher; Elisabeth Darrouzet; Jean Armengaud
Thyroglobulin (Tg) is secreted by thyroid epithelial cells. It is essential for thyroid hormonogenesis and iodine storage. Although studied for many years, only indirect and partial surveys of its post-translational modifications were reported. Here, we present a direct proteomic approach, used to study the degree of iodination of mouse Tg without any preliminary purification. A comprehensive coverage of Tg was obtained using a combination of different proteases, MS/MS fragmentation procedures with inclusion lists and a hybrid mass high-resolution LTQ-Orbitrap XL mass spectrometer. Although only 16 iodinated sites are currently known for human Tg, we uncovered 37 iodinated tyrosine residues, most of them being mono- or diiodinated. We report the specific isotopic pattern of thyroxine modification, not recognized as a normal peptide pattern. Four hormonogenic sites were detected. Two donor sites were identified through the detection of a pyruvic acid residue in place of the initial tyrosine. Evidence for polypeptide cleavages sites due to the action of cathepsins and dipeptidyl proteases in the thyroid were also detected. This work shows that semi-quantitation of Tg iodination states is feasible for human biopsies and should be of significant medical interest for further characterization of human thyroid pathologies.
Journal of Chromatography A | 2009
Alain Dedieu; Frédéric Bérenguer; Christian Basset; Odette Prat; Eric Quéméneur; Olivier Pible; Claude Vidaud
To improve our knowledge on protein targets of uranyl ion (UO(2)(2+)), we set up a proteomic strategy based on immobilized metal-affinity chromatography (IMAC). The successful enrichment of UO(2)(2+)-interacting proteins from human kidney-2 (HK-2) soluble cell extracts was obtained using an ion-exchange chromatography followed by a dedicated IMAC process previously described and designed for the uranyl ion. By mass spectrometry analysis we identified 64 proteins displaying varied functions. The use of a computational screening algorithm along with the particular ligand-based properties of the UO(2)(2+) ion allowed the analysis and categorization of the protein collection. This profitable approach demonstrated that most of these proteins fulfill criteria which could rationalize their binding to the UO(2)(2+)-loaded phase. The obtained results enable us to focus on some targets for more in-depth studies and open new insights on its toxicity mechanisms at molecular level.
Journal of Chromatography A | 2008
Christian Basset; Alain Dedieu; Philippe J Guerin; Eric Quéméneur; Daniel Meyer; Claude Vidaud
To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO2(2+)) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of aminophosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis.
Nucleic Acids Research | 2006
Guillaume Gabant; Sylvie Auxilien; Irina Tuszynska; Marie Locard; Michal J. Gajda; Guylaine Chaussinand; Bernard Fernandez; Alain Dedieu; Henri Grosjean; Béatrice Golinelli-Pimpaneau; Janusz M. Bujnicki; Jean Armengaud
The tRNA:m22G10 methyltransferase of Pyrococus abyssi (PAB1283, a member of COG1041) catalyzes the N2,N2-dimethylation of guanosine at position 10 in tRNA. Boundaries of its THUMP (THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases)—containing N-terminal domain [1–152] and C-terminal catalytic domain [157–329] were assessed by trypsin limited proteolysis. An inter-domain flexible region of at least six residues was revealed. The N-terminal domain was then produced as a standalone protein (THUMPα) and further characterized. This autonomously folded unit exhibits very low affinity for tRNA. Using protein fold-recognition (FR) methods, we identified the similarity between THUMPα and a putative RNA-recognition module observed in the crystal structure of another THUMP-containing protein (ThiI thiolase of Bacillus anthracis). A comparative model of THUMPα structure was generated, which fulfills experimentally defined restraints, i.e. chemical modification of surface exposed residues assessed by mass spectrometry, and identification of an intramolecular disulfide bridge. A model of the whole PAB1283 enzyme docked onto its tRNAAsp substrate suggests that the THUMP module specifically takes support on the co-axially stacked helices of T-arm and acceptor stem of tRNA and, together with the catalytic domain, screw-clamp structured tRNA. We propose that this mode of interactions may be common to other THUMP-containing enzymes that specifically modify nucleotides in the 3D-core of tRNA.
Proteome Science | 2013
Alain Dedieu; Elodie Sahinovic; Philippe J Guerin; Laurence Blanchard; Sylvain Fochesato; Bruno Meunier; Arjan de Groot; Jean Armengaud
BackgroundDeinococcus deserti VCD115 has been isolated from Sahara surface sand. This radiotolerant bacterium represents an experimental model of choice to understand adaptation to harsh conditions encountered in hot arid deserts. We analysed the soluble proteome dynamics in this environmentally relevant model after exposure to 3 kGy gamma radiation, a non-lethal dose that generates massive DNA damages. For this, cells were harvested at different time lapses after irradiation and their soluble proteome contents have been analysed by 2-DE and mass spectrometry.ResultsIn the first stage of the time course we observed accumulation of DNA damage response protein DdrB (that shows the highest fold change ~11), SSB, and two different RecA proteins (RecAP and RecAC). Induction of DNA repair protein PprA, DNA damage response protein DdrD and the two gyrase subunits (GyrA and GyrB) was also detected. A response regulator of the SarP family, a type II site-specific deoxyribonuclease and a putative N-acetyltransferase are three new proteins found to be induced. In a more delayed stage, we observed accumulation of several proteins related to central metabolism and protein turn-over, as well as helicase UvrD and novel forms of both gyrase subunits differing in terms of isoelectric point and molecular weight.ConclusionsPost-translational modifications of GyrA (N-terminal methionine removal and acetylation) have been evidenced and their significance discussed. We found that the Deide_02842 restriction enzyme, which is specifically found in D. deserti, is a new potential member of the radiation/desiccation response regulon, highlighting the specificities of D. deserti compared to the D. radiodurans model.
BMC Structural Biology | 2005
Jean Armengaud; Alain Dedieu; Olivier Solques; Jean-Luc Pellequer; Eric Quéméneur
BackgroundThe cluster of orthologous group COG2042 has members in all sequenced Eukaryota as well as in many Archaea. The cellular function of these proteins of ancient origin remains unknown. PSI-BLAST analysis does not indicate a possible link with even remotely-related proteins that have been functionally or structurally characterized. As a prototype among COG2042 orthologs, SSO0551 protein from the hyperthermophilic archaeon Sulfolobus solfataricus was purified to homogeneity for biophysical characterization.ResultsThe untagged protein is thermostable and behaves as a monomeric protein in gel filtration experiment. Several mass spectrometry-based strategies were combined to obtain a set of low resolution structural information. Kinetic data from limited proteolysis with various endoproteases are concordant in pointing out that region Glu73-Arg78 is hyper-sensitive, and thus accessible and flexible. Lysine labeling with NHS-biotin and cross-linking with DTSSP revealed that the 35 amino acid RLI motif at the N terminus is solvent exposed. Cross-links between Lys10-Lys14 and Lys23-Lys25 indicate that these residues are spatially close and in adequate conformation to be cross-linked. These experimental data have been used to rank multiple three-dimensional models generated by a de novo procedure.ConclusionOur data indicate that COG2042 proteins may share a novel fold. Combining biophysical, mass-spectrometry data and molecular model is a useful strategy to obtain structural information and to help in prioritizing targets in structural genomics programs.
Journal of Molecular Biology | 2008
Guillaume Gabant; Alain Lorphelin; Nathalie Nozerand; Charles Marchetti; Laurent Bellanger; Alain Dedieu; Eric Quéméneur; Béatrice Alpha-Bazin
Human checkpoint kinase 2 is a major actor in checkpoint activation through phosphorylation by ataxia telangiectasia mutated in response to DNA double-strand breaks. In the absence of de novo DNA damage, its autoactivation, reported in the event of increased Cds1/checkpoint kinase 2 (Chk2) expression, has been attributed to oligomerization. Here we report a study performed on autoactivated recombinant Chk2 proteins that aims to correlate kinase activity and phosphorylation status. Using a fluorescence-based technique to assay human checkpoint kinase 2 catalytic activity, slight differences in the ability to phosphorylate Cdc25C were observed, depending on the recombinant system used. Using mass spectrometry, the phosphorylation sites were mapped to identify sites potentially involved in the kinase activity. Five phosphorylated positions, at Ser120, Ser260, Thr225, Ser379 and Ser435, were found to be common to bacteria and insect cells expression systems. They were present in addition to the six known phosphorylation sites induced by ionizing radiation (Thr68, Thr432, Thr387, Ser516, Ser33/35 and Ser19) detected by immunoblotting. After phosphatase treatment, Chk2 regained activity via autorephosphorylation. The determination of the five common sites and ionizing-radiation-inducible positions as rephosphorylated confirms that they are potential positive regulators of Chk2 kinase activity. For Escherichia colis most highly phosphorylated 6His-Chk2, 13 additional phosphorylation sites were assigned, including 7 novel sites on top of recently reported phosphorylation sites.
Proteomics | 2015
Yinshan Yang; Bernard Fernandez; Arnaud Lagorce; Valérie Aloin; Karine Montet de Guillen; Jean-Baptiste Boyer; Alain Dedieu; Fabrice Confalonieri; Jean Armengaud; Christian Roumestand
ORFans are hypothetical proteins lacking any significant sequence similarity with other proteins. Here, we highlighted by quantitative proteomics the TGAM_1934 ORFan from the hyperradioresistant Thermococcus gammatolerans archaeon as one of the most abundant hypothetical proteins. This protein has been selected as a priority target for structure determination on the basis of its abundance in three cellular conditions. Its solution structure has been determined using multidimensional heteronuclear NMR spectroscopy. TGAM_1934 displays an original fold, although sharing some similarities with the 3D structure of the bacterial ortholog of frataxin, CyaY, a protein conserved in bacteria and eukaryotes and involved in iron–sulfur cluster biogenesis. These results highlight the potential of structural proteomics in prioritizing ORFan targets for structure determination based on quantitative proteomics data. The proteomic data and structure coordinates have been deposited to the ProteomeXchange with identifier PXD000402 (http://proteomecentral.proteomexchange.org/dataset/PXD000402) and Protein Data Bank under the accession number 2mcf, respectively.