Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alain Schmitt is active.

Publication


Featured researches published by Alain Schmitt.


Nature Genetics | 2011

KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes

Audrey Putoux; Sophie Thomas; Karlien L.M. Coene; Erica E. Davis; Yasemin Alanay; Gonul Ogur; Elif Uz; Daniela Buzas; Céline Gomes; Sophie Patrier; Christopher L. Bennett; Nadia Elkhartoufi; Marie-Hélène Saint Frison; Luc Rigonnot; Nicole Joyé; Solenn Pruvost; Gülen Eda Utine; Koray Boduroglu; Patrick Nitschke; Laura Fertitta; Christel Thauvin-Robinet; Arnold Munnich; Valérie Cormier-Daire; Raoul C. M. Hennekam; Estelle Colin; Nurten Akarsu; Christine Bole-Feysot; Nicolas Cagnard; Alain Schmitt; Nicolas Goudin

KIF7, the human ortholog of Drosophila Costal2, is a key component of the Hedgehog signaling pathway. Here we report mutations in KIF7 in individuals with hydrolethalus and acrocallosal syndromes, two multiple malformation disorders with overlapping features that include polydactyly, brain abnormalities and cleft palate. Consistent with a role of KIF7 in Hedgehog signaling, we show deregulation of most GLI transcription factor targets and impaired GLI3 processing in tissues from individuals with KIF7 mutations. KIF7 is also a likely contributor of alleles across the ciliopathy spectrum, as sequencing of a diverse cohort identified several missense mutations detrimental to protein function. In addition, in vivo genetic interaction studies indicated that knockdown of KIF7 could exacerbate the phenotype induced by knockdown of other ciliopathy transcripts. Our data show the role of KIF7 in human primary cilia, especially in the Hedgehog pathway through the regulation of GLI targets, and expand the clinical spectrum of ciliopathies.


Brain | 2011

Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system

Gabrièle Piaton; Marie-Stéphane Aigrot; Anna Williams; Sarah Moyon; Vanja Tepavčević; Imane Moutkine; Julien Gras; Katherine S. Matho; Alain Schmitt; Heidi Soellner; Andrea B. Huber; Philippe Ravassard; Catherine Lubetzki

Oligodendrocyte precursor cells, which persist in the adult central nervous system, are the main source of central nervous system remyelinating cells. In multiple sclerosis, some demyelinated plaques exhibit an oligodendroglial depopulation, raising the hypothesis of impaired oligodendrocyte precursor cell recruitment. Developmental studies identified semaphorins 3A and 3F as repulsive and attractive guidance cues for oligodendrocyte precursor cells, respectively. We previously reported their increased expression in experimental demyelination and in multiple sclerosis. Here, we show that adult oligodendrocyte precursor cells, like their embryonic counterparts, express class 3 semaphorin receptors, neuropilins and plexins and that neuropilin expression increases after demyelination. Using gain and loss of function experiments in an adult murine demyelination model, we demonstrate that semaphorin 3A impairs oligodendrocyte precursor cell recruitment to the demyelinated area. In contrast, semaphorin 3F overexpression accelerates not only oligodendrocyte precursor cell recruitment, but also remyelination rate. These data open new avenues to understand remyelination failure and promote repair in multiple sclerosis.


Stem Cells | 2014

Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells.

Florence Figeac; Pierre-François Lesault; Olivier Le Coz; Thibaud Damy; Richard Souktani; Céline Trébeau; Alain Schmitt; Jonathan Ribot; Rémi Mounier; Aurélie Guguin; Céline Manier; Mathieu Surenaud; Luc Hittinger; Jean-Luc Dubois-Randé; Anne-Marie Rodriguez

Mesenchymal stem cells (MSC) are known to repair broken heart tissues primarily through a paracrine fashion while emerging evidence indicate that MSC can communicate with cardiomyocytes (CM) through tunneling nanotubes (TNT). Nevertheless, no link has been so far established between these two processes. Here, we addressed whether cell‐to‐cell communication processes between MSC and suffering cardiomyocytes and more particularly those involving TNT control the MSC paracrine regenerative function. In the attempt to mimic in vitro an injured heart microenvironment, we developed a species mismatch coculture system consisting of terminally differentiated CM from mouse in a distressed state and human multipotent adipose derived stem cells (hMADS). In this setting, we found that crosstalk between hMADS and CM through TNT altered the secretion by hMADS of cardioprotective soluble factors such as VEGF, HGF, SDF‐1α, and MCP‐3 and thereby maximized the capacity of stem cells to promote angiogenesis and chemotaxis of bone marrow multipotent cells. Additionally, engraftment experiments into mouse infarcted hearts revealed that in vitro preconditioning of hMADS with cardiomyocytes increased the cell therapy efficacy of naïve stem cells. In particular, in comparison with hearts treated with stem cells alone, those treated with cocultured ones exhibited greater cardiac function recovery associated with higher angiogenesis and homing of bone marrow progenitor cells at the infarction site. In conclusion, our findings established the first relationship between the paracrine regenerative action of MSC and the nanotubular crosstalk with CM and emphasize that ex vivo manipulation of these communication processes might be of interest for optimizing current cardiac cell therapies. Stem Cells 2014;32:216–230


Autophagy | 2015

Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis

Olivia Lenoir; Magali Jasiek; Carole Hénique; Léa Guyonnet; Björn Hartleben; Tillmann Bork; Anna Chipont; Kathleen Flosseau; Imane Bensaada; Alain Schmitt; Jean-Marc Massé; Michèle Souyri; Tobias B. Huber; Pierre-Louis Tharaux

The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN.


Journal of Bone and Mineral Research | 2016

Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation.

Claire Bardet; Frédéric Courson; Yong Wu; Mayssam Khaddam; Benjamin Salmon; Sandy Ribes; Julia Thumfart; Paulo Marcio Yamaguti; Gaël Y. Rochefort; Marie-Lucile Figueres; Tilman Breiderhoff; Alejandro Garcia-Castaño; Benoît Vallée; Dominique Le Denmat; Brigitte Baroukh; Thomas Guilbert; Alain Schmitt; Jean-Marc Massé; Dominique Bazin; Georg Lorenz; Maria Morawietz; Jianghui Hou; Patricia Carvalho-Lobato; María Cristina Manzanares; Jean-Christophe Fricain; Deborah Talmud; Renato Demontis; Francisco de Assis Rocha Neves; Delphine Zenaty; Ariane Berdal

Claudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI. This study unravels an association of FHHNC owing to CLDN16 mutations with AI, which is directly related to the loss of function of CLDN16 during amelogenesis. Overall, this study indicates for the first time the importance of a TJ protein in tooth formation and underlines the need to establish a specific dental follow-up for these patients.


Human Molecular Genetics | 2018

Cofilin-1 phosphorylation catalyzed by ERK1/2 alters cardiac actin dynamics in dilated cardiomyopathy caused by lamin A/C gene mutation

Maria Chatzifrangkeskou; David Yadin; Thibaut Marais; Solenne Chardonnet; Mathilde Cohen-Tannoudji; Nathalie Mougenot; Alain Schmitt; Silvia Crasto; Elisa Di Pasquale; Coline Macquart; Yannick Tanguy; Imen Jebeniani; Michel Pucéat; Blanca Morales Rodriguez; Wolfgang H. Goldmann; Matteo Dal Ferro; Maria-Grazia Biferi; Petra Knaus; Gisèle Bonne; Howard J. Worman; Antoine Muchir

Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.


Human Molecular Genetics | 2018

Microtubule cytoskeleton regulates Connexin 43 localization and cardiac conduction in cardiomyopathy caused by mutation in A-type lamins gene

Coline Macquart; René Jüttner; Blanca Morales Rodriguez; Caroline Le Dour; Florence Lefebvre; Maria Chatzifrangkeskou; Alain Schmitt; Michael Gotthardt; Gisèle Bonne; Antoine Muchir

Mutations in the lamin A/C gene (LMNA) cause an autosomal dominant inherited form of dilated cardiomyopathy associated with cardiac conduction disease (hereafter referred to as LMNA cardiomyopathy). Compared with other forms of dilated cardiomyopathy, mutations in LMNA are responsible for a more aggressive clinical course due to a high rate of malignant ventricular arrhythmias. Gap junctions are intercellular channels that allow direct communication between neighboring cells, which are involved in electrical impulse propagation and coordinated contraction of the heart. For gap junctions to properly control electrical synchronization in the heart, connexin-based hemichannels must be correctly targeted to intercalated discs, Cx43 being the major connexin in the working myocytes. We here showed an altered distribution of Cx43 in a mouse model of LMNA cardiomyopathy. However, little is known on the molecular mechanisms of Cx43 remodeling in pathological context. We now show that microtubule cytoskeleton alteration and decreased acetylation of α-tubulin lead to remodeling of Cx43 in LMNA cardiomyopathy, which alters the correct communication between cardiomyocytes, ultimately leading to electrical conduction disturbances. Preventing or reversing this process could offer a strategy to repair damaged heart. Stabilization of microtubule cytoskeleton using Paclitaxel improved intraventricular conduction defects. These results indicate that microtubule cytoskeleton contributes to the pathogenesis of LMNA cardiomyopathy and that drugs stabilizing the microtubule may be beneficial for patients.


Journal of Proteomics | 2018

Comparative proteomics of respiratory exosomes in cystic fibrosis, primary ciliary dyskinesia and asthma

Virginie Rollet-Cohen; Matthieu Bourderioux; Joanna Lipecka; Cerina Chhuon; Vincent A. Jung; Myriam Mesbahi; Thao Nguyen-Khoa; Sophie Guérin-Pfyffer; Alain Schmitt; Aleksander Edelman; Isabelle Sermet-Gaudelus

Cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) are pulmonary genetic disorders associated with inflammation and heterogeneous progression of the lung disease. We hypothesized that respiratory exosomes, nanovesicles circulating in the respiratory tract, may be involved in the progression of inflammation-related lung damage. We compared proteomic content of respiratory exosomes isolated from bronchoalveolar lavage fluid in CF and PCD to asthma (A), a condition also associated with inflammation but with less severe lung damage. BALF were obtained from 3 CF, 3 PCD and 6 A patients. Exosomes were isolated from BALF by ultracentrifugations and characterized using immunoelectron microscopy and western-blot. Exosomal protein analysis was performed by high-resolution mass spectrometry using label-free quantification. Exosome enrichment was validated by electron microscopy and immunodetection of CD9, CD63 and ALIX. Mass spectrometry analysis allowed the quantification of 665 proteins, of which 14 were statistically differential according to the disease. PCD and CF exosomes contained higher levels of antioxidant proteins (Superoxide-dismutase, Glutathione peroxidase-3, Peroxiredoxin-5) and proteins involved in leukocyte chemotaxis. All these proteins are known activators of the NF-KappaB pathway. Our results suggest that respiratory exosomes are involved in the pro-inflammatory propagation during the extension of CF or PCD lung diseases. SIGNIFICANCE The mechanism of local propagation of lung disease in cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) is not clearly understood. Differential Proteomic profiles of exosomes isolated from BAL from CF, PCD and asthmatic patients suggest that they carry pro-inflammatory proteins that may be involved in the progression of lung damage.


Connective Tissue Research | 2018

Impaired mineral quality in dentin in X-linked hypophosphatemia

Benjamin R. Coyac; Guillaume Falgayrac; Guillaume Penel; Alain Schmitt; Thorsten Schinke; Agnès Linglart; Marc D. McKee; Catherine Chaussain; Claire Bardet

ABSTRACT X-linked hypophosphatemia (XLH) is a skeletal disorder arising from mutations in the PHEX gene, transmitted in most cases as an X-linked dominant trait. PHEX deficiency leads to renal phosphate wasting and hypophosphatemia, as well as impaired mineralization of bone and dentin, resulting in severe skeletal and dental complications. Dentin mineralization defects appear as characteristic, large interglobular spaces resulting from the lack of fusion of calculospherites in the circumpulpal region during the mineralization process. Here, we examined changes in the composition and structure of dentin using Raman spectroscopy on XLH human teeth, and using transmission electron microscopy on the dentin of Hyp mice (the murine model of XLH). The dentin of patients with XLH showed changes in the quality of the apatitic mineral, with greater carbonate substitution and lower crystallinity compared to the dentin of age-matched control teeth. In addition, ultrastructural analysis by transmission electron microscopy revealed a major disorganization of the peri- and intertubular structure of the dentin, with odontoblast processes residing within an unmineralized matrix sheath in the Hyp mouse. Taken together, these results indicate that like for bone and tooth cementum, there are impaired mineral quality and matrix changes in XLH dentin reflecting high sensitivity to systemic serum phosphate levels and possibly other local changes in the dentin matrix.


Nephrologie & Therapeutique | 2016

La délétion endothéliale du facteur de réponse à l’hypoxie HIF2α aggrave les lésions glomérulaires hypertensives expérimentales

Y. Luque; Olivia Lenoir; L. Hardy; Philippe Bonnin; Perrine Frère; Sandrine Placier; Alain Schmitt; Eric Rondeau; Laurent Mesnard; Pierre-Louis Tharaux

Collaboration


Dive into the Alain Schmitt's collaboration.

Top Co-Authors

Avatar

Claire Bardet

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Marc Massé

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoine Muchir

Pierre-and-Marie-Curie University

View shared research outputs
Top Co-Authors

Avatar

Arnold Munnich

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Audrey Putoux

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Benjamin R. Coyac

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Benjamin Salmon

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge