Alain Tissier
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alain Tissier.
The Plant Cell | 1999
Alain Tissier; Sylvestre Marillonnet; Victor Klimyuk; Kanu Patel; Miguel Angel Torres; George Murphy; Jonathan D. G. Jones
A new system for insertional mutagenesis based on the maize Enhancer/Suppressor-mutator (En/Spm) element was introduced into Arabidopsis. A single T-DNA construct carried a nonautonomous defective Spm (dSpm) element with a phosphinothricin herbicide resistance (BAR) gene, a transposase expression cassette, and a counterselectable gene. This construct was used to select for stable dSpm transpositions. Treatments for both positive (BAR) and negative selection markers were applicable to soil-grown plants, allowing the recovery of new transpositions on a large scale. To date, a total of 48,000 lines in pools of 50 have been recovered, of which ∼80% result from independent insertion events. DNA extracted from these pools was used in reverse genetic screens, either by polymerase chain reaction (PCR) using primers from the transposon and the targeted gene or by the display of insertions whereby inverse PCR products of insertions from the DNA pools are spotted on a membrane that is then hybridized with the probe of interest. By sequencing PCR-amplified fragments adjacent to insertion sites, we established a sequenced insertion-site database of 1200 sequences. This database permitted a comparison of the chromosomal distribution of transpositions from various T-DNA locations.
The Plant Cell | 2004
Kevin M. Culligan; Alain Tissier; Anne B. Britt
Ataxia telangiectasia-mutated and Rad3-related (ATR) plays a central role in cell-cycle regulation, transmitting DNA damage signals to downstream effectors of cell-cycle progression. In animals, ATR is an essential gene. Here, we find that Arabidopsis (Arabidopsis thaliana) atr−/− mutants were viable, fertile, and phenotypically wild-type in the absence of exogenous DNA damaging agents but exhibit altered expression of AtRNR1 (ribonucleotide reductase large subunit) and alteration of some damage-induced cell-cycle checkpoints. atr mutants were hypersensitive to hydroxyurea (HU), aphidicolin, and UV-B light but only mildly sensitive to γ-radiation. G2 arrest was observed in response to γ-irradiation in both wild-type and atr plants, albeit with slightly different kinetics, suggesting that ATR plays a secondary role in response to double-strand breaks. G2 arrest also was observed in wild-type plants in response to aphidicolin but was defective in atr mutants, resulting in compaction of nuclei and subsequent cell death. By contrast, HU-treated wild-type and atr plants arrested in G1 and showed no obvious signs of cell death. We propose that, in plants, HU invokes a novel checkpoint responsive to low levels of deoxynucleotide triphosphates. These results demonstrate the important role of cell-cycle checkpoints in the ability of plant cells to sense and cope with problems associated with DNA replication.
The Plant Cell | 2009
Christophe Sallaud; Denis Rontein; Sandrine Onillon; Françoise Jabès; Philippe Duffé; Cécile Giacalone; Samuel Thoraval; Camille Escoffier; Gaëtan Herbette; Nathalie Leonhardt; Mathilde Causse; Alain Tissier
In the wild tomato Solanum habrochaites, the Sst2 locus on chromosome 8 is responsible for the biosynthesis of several class II sesquiterpene olefins by glandular trichomes. Analysis of a trichome-specific EST collection from S. habrochaites revealed two candidate genes for the synthesis of Sst2-associated sesquiterpenes. zFPS encodes a protein with homology to Z-isoprenyl pyrophosphate synthases and SBS (for Santalene and Bergamotene Synthase) encodes a terpene synthase with homology to kaurene synthases. Both genes were found to cosegregate with the Sst2 locus. Recombinant zFPS protein catalyzed the synthesis of Z,Z-FPP from isopentenylpyrophosphate (IPP) and dimethylallylpyrophosphate (DMAPP), while coincubation of zFPS and SBS with the same substrates yielded a mixture of olefins identical to the Sst2-associated sesquiterpenes, including (+)-α-santalene, (+)-endo-β-bergamotene, and (−)-endo-α-bergamotene. In addition, headspace analysis of tobacco (Nicotiana sylvestris) plants expressing zFPS and SBS in glandular trichomes afforded the same mix of sesquiterpenes. Each of these proteins contains a putative plastid targeting sequence that mediates transport of a fused green fluorescent protein to the chloroplasts, suggesting that the biosynthesis of these sesquiterpenes uses IPP and DMAPP from the plastidic DXP pathway. These results provide novel insights into sesquiterpene biosynthesis and have general implications concerning sesquiterpene engineering in plants.
The Plant Cell | 1999
Ruth C. Meissner; Hailing Jin; Eleonora Cominelli; Marten Denekamp; Antonio B. Fuertes; Raffaella Greco; Harald D. Kranz; Steven Penfield; Katia Petroni; Ana Urzainqui; Cathie Martin; Javier Paz-Ares; Sjef Smeekens; Chiara Tonelli; Bernd Weisshaar; Elvira Baumann; Victor Klimyuk; Sylvestre Marillonnet; Kanu Patel; Elly Speulman; Alain Tissier; David Bouchez; Jonathan Jones; Andy Pereira; Ellen Wisman; Michael W. Bevan
More than 92 genes encoding MYB transcription factors of the R2R3 class have been described in Arabidopsis. The functions of a few members of this large gene family have been described, indicating important roles for R2R3 MYB transcription factors in the regulation of secondary metabolism, cell shape, and disease resistance, and in responses to growth regulators and stresses. For the majority of the genes in this family, however, little functional information is available. As the first step to characterizing these genes functionally, the sequences of >90 family members, and the map positions and expression profiles of >60 members, have been determined previously. An important second step in the functional analysis of the MYB family, through a process of reverse genetics that entails the isolation of insertion mutants, is described here. For this purpose, a variety of gene disruption resources has been used, including T-DNA–insertion populations and three distinct populations that harbor transposon insertions. We report the isolation of 47 insertions into 36 distinct MYB genes by screening a total of 73 genes. These defined insertion lines will provide the foundation for subsequent detailed functional analyses for the assignment of specific functions to individual members of the R2R3 MYB gene family.
Plant Journal | 2012
Alain Tissier
Glandular trichomes cover the surface of many plant species. They exhibit tremendous diversity, be it in their shape or the compounds they secrete. This diversity is expressed between species but also within species or even individual plants. The industrial uses of some trichome secretions and their potential as a defense barrier, for example against arthropod pests, has spurred research into the biosynthesis pathways that lead to these specialized metabolites. Because complete biosynthesis pathways take place in the secretory cells, the establishment of trichome-specific expressed sequence tag libraries has greatly accelerated their elucidation. Glandular trichomes also have an important metabolic capacity and may be considered as true cell factories. To fully exploit the potential of glandular trichomes as breeding or engineering objects, several research areas will have to be further investigated, such as development, patterning, metabolic fluxes and transcription regulation. The purpose of this review is to provide an update on the methods and technologies which have been used to investigate glandular trichomes and to propose new avenues of research to deepen our understanding of these specialized structures.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Petra M. Bleeker; Rossana Mirabella; Paul J. Diergaarde; Arjen VanDoorn; Alain Tissier; Merijn R. Kant; Marcel Prins; Martin de Vos; Michel A. Haring; Robert C. Schuurink
Tomato breeding has been tremendously efficient in increasing fruit quality and quantity but did not focus on improving herbivore resistance. The biosynthetic pathway for the production of 7-epizingiberene in a wild tomato was introduced into a cultivated greenhouse variety with the aim to obtain herbivore resistance. 7-Epizingiberene is a specific sesquiterpene with toxic and repellent properties that is produced and stored in glandular trichomes. We identified 7-epizingiberene synthase (ShZIS) that belongs to a new class of sesquiterpene synthases, exclusively using Z-Z-farnesyl-diphosphate (zFPP) in plastids, probably arisen through neo-functionalization of a common ancestor. Expression of the ShZIS and zFPP synthases in the glandular trichomes of cultivated tomato resulted in the production of 7-epizingiberene. These tomatoes gained resistance to several herbivores that are pests of tomato. Hence, introduction of this sesquiterpene biosynthetic pathway into cultivated tomatoes resulted in improved herbivore resistance.
The Plant Cell | 2013
Yuki Matsuba; Thuong T.H. Nguyen; Krystle Wiegert; Vasiliki Falara; Eliana Gonzales-Vigil; Bryan Leong; Petra Schäfer; David Kudrna; Rod A. Wing; Anthony Bolger; Alain Tissier; Alisdair R. Fernie; Cornelius S. Barry; Eran Pichersky
A region on chromosome 8 of several Solanum species contains genes for terpene synthases and cis-prenyl transferases, the latter encoding the enzymes that catalyze the formation of the substrates used by enzymes encoded by the former. Detailed sequence and biochemical analyses identify molecular events that gave rise to distinct gene composition and function in the different Solanum species. Functional gene clusters, containing two or more genes encoding different enzymes for the same pathway, are sometimes observed in plant genomes, most often when the genes specify the synthesis of specialized defensive metabolites. Here, we show that a cluster of genes in tomato (Solanum lycopersicum; Solanaceae) contains genes for terpene synthases (TPSs) that specify the synthesis of monoterpenes and diterpenes from cis-prenyl diphosphates, substrates that are synthesized by enzymes encoded by cis-prenyl transferase (CPT) genes also located within the same cluster. The monoterpene synthase genes in the cluster likely evolved from a diterpene synthase gene in the cluster by duplication and divergence. In the orthologous cluster in Solanum habrochaites, a new sesquiterpene synthase gene was created by a duplication event of a monoterpene synthase followed by a localized gene conversion event directed by a diterpene synthase gene. The TPS genes in the Solanum cluster encoding cis-prenyl diphosphate–utilizing enzymes are closely related to a tobacco (Nicotiana tabacum; Solanaceae) diterpene synthase encoding Z-abienol synthase (Nt-ABS). Nt-ABS uses the substrate copal-8-ol diphosphate, which is made from the all-trans geranylgeranyl diphosphate by copal-8-ol diphosphate synthase (Nt-CPS2). The Solanum gene cluster also contains an ortholog of Nt-CPS2, but it appears to encode a nonfunctional protein. Thus, the Solanum functional gene cluster evolved by duplication and divergence of TPS genes, together with alterations in substrate specificity to utilize cis-prenyl diphosphates and through the acquisition of CPT genes.
Plant Methods | 2012
Gerd Ulrich Balcke; Vinzenz Handrick; Nick Bergau; Mandy Fichtner; Anja Henning; Hagen Stellmach; Alain Tissier; Bettina Hause; Andrej Frolov
BackgroundPhytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding). These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing.ResultsHere we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight) tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified.ConclusionThe method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive) tandem mass spectrometry instrumentation.
New Phytologist | 2015
Nicola J. Patron; Diego Orzaez; Sylvestre Marillonnet; Heribert Warzecha; Colette Matthewman; Mark Youles; Oleg Raitskin; Aymeric Leveau; Gemma Farré; Christian Rogers; Alison G. Smith; Julian M. Hibberd; Alex A. R. Webb; James C. Locke; Sebastian Schornack; Jim Ajioka; David C. Baulcombe; Cyril Zipfel; Sophien Kamoun; Jonathan D. G. Jones; Hannah Kuhn; Silke Robatzek; H. Peter van Esse; Dale Sanders; Giles E.D. Oldroyd; Cathie Martin; Rob Field; Sarah E. O'Connor; Samantha Fox; Brande B. H. Wulff
Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering.
Journal of Biological Chemistry | 2008
Denis Rontein; Sandrine Onillon; Gaëtan Herbette; Agnès Lesot; Danièle Werck-Reichhart; Christophe Sallaud; Alain Tissier
Taxa-4(5),11(12)-diene is the first committed precursor of functionalized taxanes such as paclitaxel, a successful anticancer drug. Biosynthesis of taxanes in yew involves several oxidations, a number of which have been shown to be catalyzed by cytochrome P-450 oxygenases. Hydroxylation of the C-5α of taxa-4(5),11(12)-diene is believed to be the first of these oxidations, and a gene encoding a taxa-4(5),11(12)-diene 5α-hydroxylase (CYP725A4) was recently described (Jennewein, S., Long, R. M., Williams, R. M., and Croteau, R. (2004) Chem. Biol. 11, 379–387). In an attempt to produce the early components of the paclitaxel pathway by a metabolic engineering approach, cDNAs encoding taxa-4(5),11(12)-diene synthase and CYP725A4 were introduced in Nicotiana sylvestris for specific expression in trichome cells. Their co-expression did not lead to the production of the expected 5α-hydroxytaxa-4(20),11(12)-diene. Instead, taxa-4(5),11(12)-diene was quantitatively converted to a novel taxane that was purified and characterized. Its structure was determined by NMR analysis and found to be that of 5(12)-oxa-3(11)-cyclotaxane (OCT) in which the eight-carbon B-ring from taxa-4(5),11(12)-diene is divided into two fused five-carbon rings. In addition, OCT contains an ether bridge linking C-5 and C-12 from opposite sides of the molecule. OCT was also the sole major product obtained after incubation of taxa-4(5),11(12)-diene with NADPH and microsomes prepared from recombinant yeast expressing CYP725A4. The rearrangement of the taxa-4(5),11(12)-diene ring system is thus mediated by CYP725A4 only and does not rely on additional enzymes or factors present in the plant. The complex structure of OCT led us to propose a reaction mechanism involving a sequence of events so far unknown in P-450 catalysis.