Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan Baer is active.

Publication


Featured researches published by Alan Baer.


Journal of Biological Chemistry | 2012

Induction of DNA Damage Signaling upon Rift Valley Fever Virus Infection Results in Cell Cycle Arrest and Increased Viral Replication

Alan Baer; Dana Austin; Aarthi Narayanan; Taissia G. Popova; Markus Kainulainen; Charles G. Bailey; Fatah Kashanchi; Friedemann Weber; Kylene Kehn-Hall

Background: RVFV is a cytoplasmic replicating RNA virus that infects both humans and livestock. Results: DNA damage signaling and cell cycle arrest are induced following RVFV infection. Conclusion: The ATM signaling pathway and cell cycle arrest are important for RVFV replication. Significance: Studying virally induced signaling pathways is important for host-based therapeutic design and understanding host-pathogen interactions. Rift Valley fever virus (RVFV) is a highly pathogenic arthropod-borne virus infecting a wide range of vertebrate hosts. Of particular interest is the nonstructural NSs protein, which forms large filamentous fibril bundles in the nucleus. Past studies have shown NSs to be a multifaceted protein important for virulence through modulation of the interferon response as well acting as a general inhibitor of transcription. Here we investigated the regulation of the DNA damage signaling cascades by RVFV infection and found virally inducted phosphorylation of the classical DNA damage signaling proteins, ataxia-telangiectasia mutated (ATM) (Ser-1981), Chk.2 (Thr-68), H2A.X (Ser-139), and p53 (Ser-15). In contrast, ataxia-telangiectasia mutated and Rad3-related kinase (ATR) (Ser-428) phosphorylation was decreased following RVFV infection. Importantly, both the attenuated vaccine strain MP12 and the fully virulent strain ZH548 showed strong parallels in their up-regulation of the ATM arm of the DNA damage response and in the down-regulation of the ATR pathway. The increase in DNA damage signaling proteins did not result from gross DNA damage as no increase in DNA damage was observed following infection. Rather the DNA damage signaling was found to be dependent on the viral protein NSs, as an NSs mutant virus was not found to induce the equivalent signaling pathways. RVFV MP12-infected cells also displayed an S phase arrest that was found to be dependent on NSs expression. Use of ATM and Chk.2 inhibitors resulted in a marked decrease in S phase arrest as well as viral production. These results indicate that RVFV NSs induces DNA damage signaling pathways that are beneficial for viral replication.


Journal of Visualized Experiments | 2014

Viral concentration determination through plaque assays: using traditional and novel overlay systems.

Alan Baer; Kylene Kehn-Hall

Plaque assays remain one of the most accurate methods for the direct quantification of infectious virons and antiviral substances through the counting of discrete plaques (infectious units and cellular dead zones) in cell culture. Here we demonstrate how to perform a basic plaque assay, and how differing overlays and techniques can affect plaque formation and production. Typically solid or semisolid overlay substrates, such as agarose or carboxymethyl cellulose, have been used to restrict viral spread, preventing indiscriminate infection through the liquid growth medium. Immobilized overlays restrict cellular infection to the immediately surrounding monolayer, allowing the formation of discrete countable foci and subsequent plaque formation. To overcome the difficulties inherent in using traditional overlays, a novel liquid overlay utilizing microcrystalline cellulose and carboxymethyl cellulose sodium has been increasingly used as a replacement in the standard plaque assay. Liquid overlay plaque assays can be readily performed in either standard 6 or 12 well plate formats as per traditional techniques and require no special equipment. Due to its liquid state and subsequent ease of application and removal, microculture plate formats may alternatively be utilized as a rapid, accurate and high throughput alternative to larger scale viral titrations. Use of a non heated viscous liquid polymer offers the opportunity to streamline work, conserves reagents, incubator space, and increases operational safety when used in traditional or high containment labs as no reagent heating or glassware are required. Liquid overlays may also prove more sensitive than traditional overlays for certain heat labile viruses.


PLOS ONE | 2012

p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production.

Dana Austin; Alan Baer; Lindsay Lundberg; Nazly Shafagati; Annalise Schoonmaker; Aarthi Narayanan; Taissia G. Popova; Jean Jacques Panthier; Fatah Kashanchi; Charles L. Bailey; Kylene Kehn-Hall

Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production.


Journal of Biological Chemistry | 2012

Curcumin Inhibits Rift Valley Fever Virus Replication in Human Cells

Aarthi Narayanan; Kylene Kehn-Hall; Svetlana Senina; Lindsay Lundberg; Rachel Van Duyne; Irene Guendel; Ravi Das; Alan Baer; Laura M. Bethel; Michael J. Turell; Amy L. Hartman; Bhaskar C. Das; Charles L. Bailey; Fatah Kashanchi

Background: Rift Valley fever virus is a single-stranded RNA virus that causes disease in humans and livestock. Results: Rift Valley fever virus infection activates the host NFκB signaling cascade. Conclusion: NFκB inhibitors, particularly curcumin, down-regulate virus in both in vitro and in vivo models. Significance: Novel versions of host components resulting from an infection make them ideal therapeutic targets. Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets.


Antiviral Research | 2013

Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication.

Lindsay Lundberg; Chelsea Pinkham; Alan Baer; Moushimi Amaya; Aarthi Narayanan; Kylie M. Wagstaff; David A. Jans; Kylene Kehn-Hall

Targeting host responses to invading viruses has been the focus of recent antiviral research. Venezuelan Equine Encephalitis Virus (VEEV) is able to modulate host transcription and block nuclear trafficking at least partially due to its capsid protein forming a complex with the host proteins importin α/β1 and CRM1. We hypothesized that disrupting the interaction of capsid with importin α/β1 or the interaction of capsid with CRM1 would alter capsid localization, thereby lowering viral titers in vitro. siRNA mediated knockdown of importin α, importin β1, and CRM1 altered capsid localization, confirming their role in modulating capsid trafficking. Mifepristone and ivermectin, inhibitors of importin α/β-mediated import, were able to reduce nuclear-associated capsid, while leptomycin B, a potent CRM1 inhibitor, confined capsid to the nucleus. In addition to altering the level and distribution of capsid, the three inhibitors were able to reduce viral titers in a relevant mammalian cell line with varying degrees of efficacy. The inhibitors were also able to reduce the cytopathic effects associated with VEEV infection, hinting that nuclear import inhibitors may be protecting cells from apoptosis in addition to disrupting the function of an essential viral protein. Our results confirm that VEEV uses host importins and exportins during part of its life cycle. Further, it suggests that temporarily targeting host proteins that are hijacked for use by viruses is a viable antiviral therapy.


PLOS Neglected Tropical Diseases | 2013

The Use of NanoTrap Particles as a Sample Enrichment Method to Enhance the Detection of Rift Valley Fever Virus

Nazly Shafagati; Aarthi Narayanan; Alan Baer; Katherine Fite; Chelsea Pinkham; Charles L. Bailey; Fatah Kashanchi; Benjamin Lepene; Kylene Kehn-Hall

Background Rift Valley Fever Virus (RVFV) is a zoonotic virus that is not only an emerging pathogen but is also considered a biodefense pathogen due to the threat it may cause to public health and national security. The current state of diagnosis has led to misdiagnosis early on in infection. Here we describe the use of a novel sample preparation technology, NanoTrap particles, to enhance the detection of RVFV. Previous studies demonstrated that NanoTrap particles lead to both 100 percent capture of protein analytes as well as an improvement of more than 100-fold in sensitivity compared to existing methods. Here we extend these findings by demonstrating the capture and enrichment of viruses. Results Screening of NanoTrap particles indicated that one particle, NT53, was the most efficient at RVFV capture as demonstrated by both qRT-PCR and plaque assays. Importantly, NT53 capture of RVFV resulted in greater than 100-fold enrichment from low viral titers when other diagnostics assays may produce false negatives. NT53 was also capable of capturing and enhancing RVFV detection from serum samples. RVFV that was inactivated through either detergent or heat treatment was still found bound to NT53, indicating the ability to use NanoTrap particles for viral capture prior to transport to a BSL-2 environment. Furthermore, both NP-40-lysed virus and purified RVFV RNA were bound by NT53. Importantly, NT53 protected viral RNA from RNase A degradation, which was not observed with other commercially available beads. Incubation of RVFV samples with NT53 also resulted in increased viral stability as demonstrated through preservation of infectivity at elevated temperatures. Finally, NanoTrap particles were capable of capturing VEEV and HIV, demonstrating the broad applicability of NanoTrap particles for viral diagnostics. Conclusion This study demonstrates NanoTrap particles are capable of capturing, enriching, and protecting RVFV virions. Furthermore, the use of NanoTrap particles can be extended to a variety of viruses, including VEEV and HIV.


Journal of Virology | 2016

Venezuelan Equine Encephalitis Virus Induces Apoptosis through the Unfolded Protein Response Activation of EGR1.

Alan Baer; Lindsay Lundberg; Danielle Swales; Nicole Waybright; Chelsea Pinkham; Jonathan D. Dinman; Jonathan L. Jacobs; Kylene Kehn-Hall

ABSTRACT Venezuelan equine encephalitis virus (VEEV) is a previously weaponized arthropod-borne virus responsible for causing acute and fatal encephalitis in animal and human hosts. The increased circulation and spread in the Americas of VEEV and other encephalitic arboviruses, such as eastern equine encephalitis virus and West Nile virus, underscore the need for research aimed at characterizing the pathogenesis of viral encephalomyelitis for the development of novel medical countermeasures. The host-pathogen dynamics of VEEV Trinidad donkey-infected human astrocytoma U87MG cells were determined by carrying out RNA sequencing (RNA-Seq) of poly(A) and mRNAs. To identify the critical alterations that take place in the host transcriptome following VEEV infection, samples were collected at 4, 8, and 16 h postinfection and RNA-Seq data were acquired using an Ion Torrent PGM platform. Differential expression of interferon response, stress response factors, and components of the unfolded protein response (UPR) was observed. The protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm of the UPR was activated, as the expression of both activating transcription factor 4 (ATF4) and CHOP (DDIT3), critical regulators of the pathway, was altered after infection. Expression of the transcription factor early growth response 1 (EGR1) was induced in a PERK-dependent manner. EGR1−/− mouse embryonic fibroblasts (MEFs) demonstrated lower susceptibility to VEEV-induced cell death than isogenic wild-type MEFs, indicating that EGR1 modulates proapoptotic pathways following VEEV infection. The influence of EGR1 is of great importance, as neuronal damage can lead to long-term sequelae in individuals who have survived VEEV infection. IMPORTANCE Alphaviruses represent a group of clinically relevant viruses transmitted by mosquitoes to humans. In severe cases, viral spread targets neuronal tissue, resulting in significant and life-threatening inflammation dependent on a combination of virus-host interactions. Currently there are no therapeutics for infections cause by encephalitic alphaviruses due to an incomplete understanding of their molecular pathogenesis. Venezuelan equine encephalitis virus (VEEV) is an alphavirus that is prevalent in the Americas and that is capable of infecting horses and humans. Here we utilized next-generation RNA sequencing to identify differential alterations in VEEV-infected astrocytes. Our results indicated that the abundance of transcripts associated with the interferon and the unfolded protein response pathways was altered following infection and demonstrated that early growth response 1 (EGR1) contributed to VEEV-induced cell death.


Fems Immunology and Medical Microbiology | 2014

Proteomic strategies for the discovery of novel diagnostic and therapeutic targets for infectious diseases

Moushimi Amaya; Alan Baer; Kelsey Voss; Catherine E. Campbell; Claudius Mueller; Charles L. Bailey; Kylene Kehn-Hall; Emanuel F. Petricoin; Aarthi Narayanan

Abstract Viruses have developed numerous and elegant strategies to manipulate the host cell machinery to establish a productive infectious cycle. The interaction of viral proteins with host proteins plays an important role in infection and pathogenesis, often bypassing traditional host defenses such as the interferon response and apoptosis. Host–viral protein interactions can be studied using a variety of proteomic approaches ranging from genetic and biochemical to large‐scale high‐throughput technologies. Protein interactions between host and viral proteins are greatly influenced by host signal transduction pathways. In this review, we will focus on comparing proteomic information obtained through differing technologies and how their integration can be used to determine the functional aspect of the host response to infection. We will briefly review and evaluate techniques employed to elucidate viral–host interactions with a primary focus on Protein Microarrays (PMA) and Mass Spectrometry (MS) as potential tools in the discovery of novel therapeutic targets. As many potential molecular markers and targets are proteins, proteomic profiling is expected to yield both clearer and more direct answers to functional and pharmacologic questions.


Antiviral Research | 2016

Protein Phosphatase-1 regulates Rift Valley fever virus replication

Alan Baer; Nazly Shafagati; Ashwini Benedict; Tatiana Ammosova; Andrey Ivanov; Ramin M. Hakami; Kaori Terasaki; Shinji Makino; Sergei Nekhai; Kylene Kehn-Hall

Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target.


Antiviral Research | 2017

Rapamycin modulation of p70 S6 kinase signaling inhibits Rift Valley fever virus pathogenesis

Todd M. Bell; Virginia Espina; Svetlana Senina; Caitlin Woodson; Ashwini Brahms; Brian Carey; Shih-Chao Lin; Lindsay Lundberg; Chelsea Pinkham; Alan Baer; Claudius Mueller; Elizabeth A. Chlipala; Faye Sharman; Cynthia de la Fuente; Lance A. Liotta; Kylene Kehn-Hall

Abstract Despite over 60 years of research on antiviral drugs, very few are FDA approved to treat acute viral infections. Rift Valley fever virus (RVFV), an arthropod borne virus that causes hemorrhagic fever in severe cases, currently lacks effective treatments. Existing as obligate intracellular parasites, viruses have evolved to manipulate host cell signaling pathways to meet their replication needs. Specifically, translation modulation is often necessary for viruses to establish infection in their host. Here we demonstrated phosphorylation of p70 S6 kinase, S6 ribosomal protein, and eIF4G following RVFV infection in vitro through western blot analysis and in a mouse model of infection through reverse phase protein microarrays (RPPA). Inhibition of p70 S6 kinase through rapamycin treatment reduced viral titers in vitro and increased survival and mitigated clinical disease in RVFV challenged mice. Additionally, the phosphorylation of p70 S6 kinase was decreased following rapamycin treatment in vivo. Collectively these data demonstrate modulating p70 S6 kinase can be an effective antiviral strategy. Highlightsp70 S6 kinase, S6 ribosomal protein, and eIF4G are phosphorylated following RVFV infection in vitro and in vivo.Rapamycin treatment reduced viral replication and decreased phosphorylation of these proteins in vitro.Rapamycin treatment increased survival and reduced clinical disease in RVFV challenged mice.Phosphorylation of p70 S6 kinase was decreased following rapamycin treatment in vivo.

Collaboration


Dive into the Alan Baer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge