Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan D. D'Andrea is active.

Publication


Featured researches published by Alan D. D'Andrea.


Molecular Cell | 2001

Interaction of the Fanconi Anemia Proteins and BRCA1 in a Common Pathway

Irene Garcia-Higuera; Toshiyasu Taniguchi; Shridar Ganesan; M. Stephen Meyn; Cynthia Timmers; James Hejna; Markus Grompe; Alan D. D'Andrea

Fanconi anemia (FA) is a human autosomal recessive cancer susceptibility disorder characterized by cellular sensitivity to mitomycin C and ionizing radiation. Although six FA genes (for subtypes A, C, D2, E, F, and G) have been cloned, their relationship to DNA repair remains unknown. In the current study, we show that a nuclear complex containing the FANCA, FANCC, FANCF, and FANCG proteins is required for the activation of the FANCD2 protein to a monoubiquitinated isoform. In normal (non-FA) cells, FANCD2 is monoubiquitinated in response to DNA damage and is targeted to nuclear foci (dots). Activated FANCD2 protein colocalizes with the breast cancer susceptibility protein, BRCA1, in ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. The FANCD2 protein, therefore, provides the missing link between the FA protein complex and the cellular BRCA1 repair machinery. Disruption of this pathway results in the cellular and clinical phenotype common to all FA subtypes.


Nature Reviews Cancer | 2003

The Fanconi anaemia/BRCA pathway

Alan D. D'Andrea; Markus Grompe

Fanconi anaemia (FA) is a rare genetic cancer-susceptibility syndrome that is characterized by congenital abnormalities, bone-marrow failure and cellular sensitivity to DNA crosslinking agents. Seven FA-associated genes have recently been cloned, and their products were found to interact with well-known DNA-damage-response proteins, including BRCA1, ATM and NBS1. The FA proteins could therefore be involved in the cell-cycle checkpoint and DNA-repair pathways. Recent studies implicate the FA proteins in the process of repairing chromosome defects that occur during homologous recombination, and disruption of the FA genes results in chromosome instability — a common feature of many human cancers.


Cell | 1989

Expression cloning of the murine erythropoietin receptor

Alan D. D'Andrea; Harvey F. Lodish; Gordon G. Wong

Two independent cDNA clones encoding the erythropoietin receptor (EPO-R) were isolated from a pXM expression library made from uninduced murine erythroleukemia (MEL) cells. The clones were identified by screening COS cell transfectants for binding and uptake of radioiodinated recombinant human erythropoietin. As inferred from the cDNA sequence, the murine erythropoietin receptor is a 507 amino acid polypeptide with a single membrane-spanning domain. It shows no similarities to known proteins or nucleic acid sequences in the data bases. Although the MEL cell EPO-R has a single affinity with a dissociation constant of approximately 240 pM, the EPO-R cDNA, expressed in COS cells, generates both a high-affinity (30 pM) and a low-affinity (210 pM) receptor.


Cell | 2007

Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair

Agata Smogorzewska; Shuhei Matsuoka; Patrizia Vinciguerra; E. Robert McDonald; Kristen E. Hurov; Ji Luo; Bryan A. Ballif; Steven P. Gygi; Kay Hofmann; Alan D. D'Andrea; Stephen J. Elledge

Fanconi anemia (FA) is a developmental and cancer-predisposition syndrome caused by mutations in genes controlling DNA interstrand crosslink repair. Several FA proteins form a ubiquitin ligase that controls monoubiquitination of the FANCD2 protein in an ATR-dependent manner. Here we describe the FA protein FANCI, identified as an ATM/ATR kinase substrate required for resistance to mitomycin C. FANCI shares sequence similarity with FANCD2, likely evolving from a common ancestral gene. The FANCI protein associates with FANCD2 and, together, as the FANCI-FANCD2 (ID) complex, localize to chromatin in response to DNA damage. Like FANCD2, FANCI is monoubiquitinated and unexpectedly, ubiquitination of each protein is important for the maintenance of ubiquitin on the other, indicating the existence of a dual ubiquitin-locking mechanism required for ID complex function. Mutation in FANCI is responsible for loss of a functional FA pathway in a patient with Fanconi anemia complementation group I.


Nature Medicine | 2003

Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors

Toshiyasu Taniguchi; Marc Tischkowitz; Najim Ameziane; Shirley Hodgson; Christopher Mathew; Hans Joenje; Samuel C. Mok; Alan D. D'Andrea

Ovarian tumor cells are often genomically unstable and hypersensitive to cisplatin. To understand the molecular basis for this phenotype, we examined the integrity of the Fanconi anemia–BRCA (FANC-BRCA) pathway in those cells. This pathway regulates cisplatin sensitivity and is governed by the coordinate activity of six genes associated with Fanconi anemia (FANCA, FANCC, FANCD2, FANCE, FANCF and FANCG) as well as BRCA1 and BRCA2 (FANCD1). Here we show that the FANC-BRCA pathway is disrupted in a subset of ovarian tumor lines. Mono-ubiquitination of FANCD2, a measure of the function of this pathway, and cisplatin resistance were restored by functional complementation with FANCF, a gene that is upstream in this pathway. FANCF inactivation in ovarian tumors resulted from methylation of its CpG island, and acquired cisplatin resistance correlated with demethylation of FANCF. We propose a model for ovarian tumor progression in which the initial methylation of FANCF is followed by FANCF demethylation and ultimately results in cisplatin resistance.


Annual Review of Genetics | 2009

How the Fanconi Anemia Pathway Guards the Genome

George-Lucian Moldovan; Alan D. D'Andrea

Fanconi Anemia (FA) is an inherited genomic instability disorder, caused by mutations in genes regulating replication-dependent removal of interstrand DNA crosslinks. The Fanconi Anemia pathway is thought to coordinate a complex mechanism that enlists elements of three classic DNA repair pathways, namely homologous recombination, nucleotide excision repair, and mutagenic translesion synthesis, in response to genotoxic insults. To this end, the Fanconi Anemia pathway employs a unique nuclear protein complex that ubiquitinates FANCD2 and FANCI, leading to formation of DNA repair structures. Lack of obvious enzymatic activities among most FA members has made it challenging to unravel its precise modus operandi. Here we review the current understanding of how the Fanconi Anemia pathway components participate in DNA repair and discuss the mechanisms that regulate this pathway to ensure timely, efficient, and correct restoration of chromosomal integrity.


Cell | 2002

Convergence of the Fanconi Anemia and Ataxia Telangiectasia Signaling Pathways

Toshiyasu Taniguchi; Irene Garcia-Higuera; Bo Xu; Paul R. Andreassen; Richard C. Gregory; Seong-Tae Kim; William S. Lane; Michael B. Kastan; Alan D. D'Andrea

Fanconi anemia (FA) and ataxia telangiectasia (AT) are clinically distinct autosomal recessive disorders characterized by spontaneous chromosome breakage and hematological cancers. FA cells are hypersensitive to mitomycin C (MMC), while AT cells are hypersensitive to ionizing radiation (IR). Here, we identify the Fanconi anemia protein, FANCD2, as a link between the FA and ATM damage response pathways. ATM phosphorylates FANCD2 on serine 222 in vitro. This site is also phosphorylated in vivo in an ATM-dependent manner following IR. Phosphorylation of FANCD2 is required for activation of an S phase checkpoint. The ATM-dependent phosphorylation of FANCD2 on S222 and the FA pathway-dependent monoubiquitination of FANCD2 on K561 are independent posttranslational modifications regulating discrete cellular signaling pathways. Biallelic disruption of FANCD2 results in both MMC and IR hypersensitivity.


Molecular Cell | 2001

Positional Cloning of a Novel Fanconi Anemia Gene, FANCD2

Cynthia Timmers; Toshiyasu Taniguchi; James Hejna; Carol Reifsteck; Lora Lucas; Donald A. Bruun; Matthew Thayer; Barbara Cox; Susan B. Olson; Alan D. D'Andrea; Robb E. Moses; Markus Grompe

Fanconi anemia (FA) is a genetic disease with birth defects, bone marrow failure, and cancer susceptibility. To date, genes for five of the seven known complementation groups have been cloned. Complementation group D is heterogeneous, consisting of two distinct genes, FANCD1 and FANCD2. Here we report the positional cloning of FANCD2. The gene consists of 44 exons, encodes a novel 1451 amino acid nuclear protein, and has two protein isoforms. Similar to other FA proteins, the FANCD2 protein has no known functional domains, but unlike other known FA genes, FANCD2 is highly conserved in A. thaliana, C. elegans, and Drosophila. Retroviral transduction of the cloned FANCD2 cDNA into FA-D2 cells resulted in functional complementation of MMC sensitivity.


Nature Cell Biology | 2006

Regulation of monoubiquitinated PCNA by DUB autocleavage

Tony T. Huang; Sebastian M.B. Nijman; Kanchan D. Mirchandani; Paul J. Galardy; Martin A. Cohn; Wilhelm Haas; Steven P. Gygi; Hidde L. Ploegh; René Bernards; Alan D. D'Andrea

Monoubiquitination is a reversible post-translational protein modification that has an important regulatory function in many biological processes, including DNA repair. Deubiquitinating enzymes (DUBs) are proteases that are negative regulators of monoubiquitination, but little is known about their regulation and contribution to the control of conjugated-substrate levels. Here, we show that the DUB ubiquitin specific protease 1 (USP1) deubiquitinates the DNA replication processivity factor, PCNA, as a safeguard against error-prone translesion synthesis (TLS) of DNA. Ultraviolet (UV) irradiation inactivates USP1 through an autocleavage event, thus enabling monoubiquitinated PCNA to accumulate and to activate TLS. Significantly, the site of USP1 cleavage is immediately after a conserved internal ubiquitin-like diglycine (Gly–Gly) motif. This mechanism is reminiscent of the processing of precursors of ubiquitin and ubiquitin-like modifiers by DUBs. Our results define a regulatory mechanism for protein ubiquitination that involves the signal-induced degradation of an inhibitory DUB.


Genes & Development | 2012

Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway

Hyungjin Kim; Alan D. D'Andrea

The maintenance of genome stability is critical for survival, and its failure is often associated with tumorigenesis. The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand cross-links (ICLs), and a germline defect in the pathway results in FA, a cancer predisposition syndrome driven by genome instability. Central to this pathway is the monoubiquitination of FANCD2, which coordinates multiple DNA repair activities required for the resolution of ICLs. Recent studies have demonstrated how the FA pathway coordinates three critical DNA repair processes, including nucleolytic incision, translesion DNA synthesis (TLS), and homologous recombination (HR). Here, we review recent advances in our understanding of the downstream ICL repair steps initiated by ubiquitin-mediated FA pathway activation.

Collaboration


Dive into the Alan D. D'Andrea's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiyasu Taniguchi

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge