Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey I. Shapiro is active.

Publication


Featured researches published by Geoffrey I. Shapiro.


The New England Journal of Medicine | 2010

Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer.

Eunice L. Kwak; Yung-Jue Bang; D. Ross Camidge; Alice T. Shaw; Benjamin Solomon; Robert G. Maki; Sai-Hong Ignatius Ou; Bruce J. Dezube; Pasi A. Jänne; Daniel B. Costa; Marileila Varella-Garcia; Woo-Ho Kim; Thomas J. Lynch; Panos Fidias; Hannah Stubbs; Jeffrey A. Engelman; Lecia V. Sequist; Weiwei Tan; Leena Gandhi; Mari Mino-Kenudson; Greg C. Wei; S. Martin Shreeve; Mark J. Ratain; Jeffrey Settleman; James G. Christensen; Daniel A. Haber; Keith D. Wilner; Ravi Salgia; Geoffrey I. Shapiro; Jeffrey W. Clark

BACKGROUND Oncogenic fusion genes consisting of EML4 and anaplastic lymphoma kinase (ALK) are present in a subgroup of non-small-cell lung cancers, representing 2 to 7% of such tumors. We explored the therapeutic efficacy of inhibiting ALK in such tumors in an early-phase clinical trial of crizotinib (PF-02341066), an orally available small-molecule inhibitor of the ALK tyrosine kinase. METHODS After screening tumor samples from approximately 1500 patients with non-small-cell lung cancer for the presence of ALK rearrangements, we identified 82 patients with advanced ALK-positive disease who were eligible for the clinical trial. Most of the patients had received previous treatment. These patients were enrolled in an expanded cohort study instituted after phase 1 dose escalation had established a recommended crizotinib dose of 250 mg twice daily in 28-day cycles. Patients were assessed for adverse events and response to therapy. RESULTS Patients with ALK rearrangements tended to be younger than those without the rearrangements, and most of the patients had little or no exposure to tobacco and had adenocarcinomas. At a mean treatment duration of 6.4 months, the overall response rate was 57% (47 of 82 patients, with 46 confirmed partial responses and 1 confirmed complete response); 27 patients (33%) had stable disease. A total of 63 of 82 patients (77%) were continuing to receive crizotinib at the time of data cutoff, and the estimated probability of 6-month progression-free survival was 72%, with no median for the study reached. The drug resulted in grade 1 or 2 (mild) gastrointestinal side effects. CONCLUSIONS The inhibition of ALK in lung tumors with the ALK rearrangement resulted in tumor shrinkage or stable disease in most patients. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).


Oncogene | 2008

BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models

Danan Li; Lauren Ambrogio; Takeshi Shimamura; Shigeto Kubo; Masaya Takahashi; Lucian R. Chirieac; Robert F. Padera; Geoffrey I. Shapiro; Anke Baum; Himmelsbach F; Wolfgang J. Rettig; Matthew Meyerson; Flavio Solca; Heidi Greulich; Kwok-Kin Wong

Genetic alterations in the kinase domain of the epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) patients are associated with sensitivity to treatment with small molecule tyrosine kinase inhibitors. Although first-generation reversible, ATP-competitive inhibitors showed encouraging clinical responses in lung adenocarcinoma tumors harboring such EGFR mutations, almost all patients developed resistance to these inhibitors over time. Such resistance to first-generation EGFR inhibitors was frequently linked to an acquired T790M point mutation in the kinase domain of EGFR, or upregulation of signaling pathways downstream of HER3. Overcoming these mechanisms of resistance, as well as primary resistance to reversible EGFR inhibitors driven by a subset of EGFR mutations, will be necessary for development of an effective targeted therapy regimen. Here, we show that BIBW2992, an anilino-quinazoline designed to irreversibly bind EGFR and HER2, potently suppresses the kinase activity of wild-type and activated EGFR and HER2 mutants, including erlotinib-resistant isoforms. Consistent with this activity, BIBW2992 suppresses transformation in isogenic cell-based assays, inhibits survival of cancer cell lines and induces tumor regression in xenograft and transgenic lung cancer models, with superior activity over erlotinib. These findings encourage further testing of BIBW2992 in lung cancer patients harboring EGFR or HER2 oncogenes.


Lancet Oncology | 2012

Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study

D. Ross Camidge; Yung-Jue Bang; Eunice L. Kwak; A. John Iafrate; Marileila Varella-Garcia; Stephen B. Fox; Gregory J. Riely; Benjamin Solomon; Sai-Hong Ignatius Ou; Dong-Wan Kim; Ravi Salgia; P. Fidias; Jeffrey A. Engelman; Leena Gandhi; Pasi A. Jänne; Daniel B. Costa; Geoffrey I. Shapiro; Patricia LoRusso; Katherine Ruffner; Patricia Stephenson; Yiyun Tang; Keith D. Wilner; Jeffrey W. Clark; Alice T. Shaw

BACKGROUND ALK fusion genes occur in a subset of non-small-cell lung cancers (NSCLCs). We assessed the tolerability and activity of crizotinib in patients with NSCLC who were prospectively identified to have an ALK fusion within the first-in-man phase 1 crizotinib study. METHODS In this phase 1 study, patients with ALK-positive stage III or IV NSCLC received oral crizotinib 250 mg twice daily in 28-day cycles. Endpoints included tumour responses, duration of response, time to tumour response, progression-free survival (PFS), overall survival at 6 and 12 months, and determination of the safety and tolerability and characterisation of the plasma pharmacokinetic profile of crizotinib after oral administration. Responses were analysed in evaluable patients and PFS and safety were analysed in all patients. This study is registered with ClinicalTrials.gov, number NCT00585195. FINDINGS Between Aug 27, 2008, and June 1, 2011, 149 ALK-positive patients were enrolled, 143 of whom were included in the response-evaluable population. 87 of 143 patients had an objective response (60·8%, 95% CI 52·3-68·9), including three complete responses and 84 partial responses. Median time to first documented objective response was 7·9 weeks (range 2·1-39·6) and median duration of response was 49·1 weeks (95% CI 39·3-75·4). The response rate seemed to be largely independent of age, sex, performance status, or line of treatment. Median PFS was 9·7 months (95% CI 7·7-12·8). Median overall survival data are not yet mature, but estimated overall survival at 6 and 12 months was 87·9% (95% CI 81·3-92·3) and 74·8% (66·4-81·5), respectively. 39 patients continued to receive crizotinib for more than 2 weeks after progression because of perceived ongoing clinical benefit from the drug (12 for at least 6 months from the time of their initial investigator-defined disease progression). Overall, 144 (97%) of 149 patients experienced treatment-related adverse events, which were mostly grade 1 or 2. The most common adverse events were visual effects, nausea, diarrhoea, constipation, vomiting, and peripheral oedema. The most common treatment-related grade 3 or 4 adverse events were neutropenia (n=9), raised alanine aminotransferase (n=6), hypophosphataemia (n=6), and lymphopenia (n=6). INTERPRETATION Crizotinib is well tolerated with rapid, durable responses in patients with ALK-positive NSCLC. There seems to be potential for ongoing benefit after initial disease progression in this population, but a more formal definition of ongoing benefit in this context is needed.


Journal of Clinical Oncology | 2006

Cyclin-Dependent Kinase Pathways As Targets for Cancer Treatment

Geoffrey I. Shapiro

Cyclin-dependent kinases (cdks) are critical regulators of cell cycle progression and RNA transcription. A variety of genetic and epigenetic events cause universal overactivity of the cell cycle cdks in human cancer, and their inhibition can lead to both cell cycle arrest and apoptosis. However, built-in redundancy may limit the effects of highly selective cdk inhibition. Cdk4/6 inhibition has been shown to induce potent G1 arrest in vitro and tumor regression in vivo; cdk2/1 inhibition has the most potent effects during the S and G2 phases and induces E2F transcription factor-dependent cell death. Modulation of cdk2 and cdk1 activities also affects survival checkpoint responses after exposure to DNA-damaging and microtubule-stabilizing agents. The transcriptional cdks phosphorylate the carboxy-terminal domain of RNA polymerase II, facilitating efficient transcriptional initiation and elongation. Inhibition of these cdks primarily affects the accumulation of transcripts with short half-lives, including those encoding antiapoptosis family members, cell cycle regulators, as well as p53 and nuclear factor-kappa B-responsive gene targets. These effects may account for apoptosis induced by cdk9 inhibitors, especially in malignant hematopoietic cells, and may also potentiate cytotoxicity mediated by disruption of a variety of pathways in many transformed cell types. Current work is focusing on overcoming pharmacokinetic barriers that hindered development of flavopiridol, a pan-cdk inhibitor, as well as assessing novel classes of compounds potently targeting groups of cell cycle cdks (cdk4/6 or cdk2/1) with variable effects on the transcriptional cdks 7 and 9. These efforts will establish whether the strategy of cdk inhibition is able to produce therapeutic benefit in the majority of human tumors.


Lancet Oncology | 2011

Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis

Alice T. Shaw; Beow Y. Yeap; Benjamin Solomon; Gregory J. Riely; Justin F. Gainor; Jeffrey A. Engelman; Geoffrey I. Shapiro; Daniel B. Costa; Sai-Hong Ignatius Ou; Mohit Butaney; Ravi Salgia; Robert G. Maki; Marileila Varella-Garcia; Robert C. Doebele; Yung-Jue Bang; Kimary Kulig; Paulina Selaru; Yiyun Tang; Keith D. Wilner; Eunice L. Kwak; Jeffrey W. Clark; A. John Iafrate; D. Ross Camidge

BACKGROUND ALK gene rearrangement defines a new molecular subtype of non-small-cell lung cancer (NSCLC). In a recent phase 1 clinical trial, the ALK tyrosine-kinase inhibitor (TKI) crizotinib showed marked antitumour activity in patients with advanced, ALK-positive NSCLC. To assess whether crizotinib affects overall survival in these patients, we did a retrospective study comparing survival outcomes in crizotinib-treated patients in the trial and crizotinib-naive controls screened during the same time period. METHODS We examined overall survival in patients with advanced, ALK-positive NSCLC who enrolled in the phase 1 clinical trial of crizotinib, focusing on the cohort of 82 patients who had enrolled through Feb 10, 2010. For comparators, we identified 36 ALK-positive patients from trial sites who were not given crizotinib (ALK-positive controls), 67 patients without ALK rearrangement but positive for EGFR mutation, and 253 wild-type patients lacking either ALK rearrangement or EGFR mutation. To assess differences in overall survival, we assessed subsets of clinically comparable ALK-positive and ALK-negative patients. FINDINGS Among 82 ALK-positive patients who were given crizotinib, median overall survival from initiation of crizotinib has not been reached (95% CI 17 months to not reached); 1-year overall survival was 74% (95% CI 63-82), and 2-year overall survival was 54% (40-66). Overall survival did not differ based on age, sex, smoking history, or ethnic origin. Survival in 30 ALK-positive patients who were given crizotinib in the second-line or third-line setting was significantly longer than in 23 ALK-positive controls given any second-line therapy (median overall survival not reached [95% CI 14 months to not reached] vs 6 months [4-17], 1-year overall survival 70% [95% CI 50-83] vs 44% [23-64], and 2-year overall survival 55% [33-72] vs 12% [2-30]; hazard ratio 0·36, 95% CI 0·17-0·75; p=0·004). Survival in 56 crizotinib-treated, ALK-positive patients was similar to that in 63 ALK-negative, EGFR-positive patients given EGFR TKI therapy (median overall survival not reached [95% CI 17 months to not reached] vs 24 months [15-34], 1-year overall survival 71% [95% CI 58-81] vs 74% [61-83], and 2-year overall survival 57% [40-71] vs 52% [38-65]; p=0·786), whereas survival in 36 crizotinib-naive, ALK-positive controls was similar to that in 253 wild-type controls (median overall survival 20 months [95% CI 13-26] vs 15 months [13-17]; p=0·244). INTERPRETATION In patients with advanced, ALK-positive NSCLC, crizotinib therapy is associated with improved survival compared with that of crizotinib-naive controls. ALK rearrangement is not a favourable prognostic factor in advanced NSCLC. FUNDING Pfizer Inc, V Foundation for Cancer Research.


Nature | 2007

LKB1 modulates lung cancer differentiation and metastasis.

Hongbin Ji; Matthew R. Ramsey; D. Neil Hayes; Cheng Fan; Kate McNamara; Piotr Kozlowski; Chad Torrice; Michael C. Wu; Takeshi Shimamura; Samanthi A. Perera; Mei Chih Liang; Dongpo Cai; George N. Naumov; Lei Bao; Cristina M. Contreras; Danan Li; Liang Chen; Janakiraman Krishnamurthy; Jussi Koivunen; Lucian R. Chirieac; Robert F. Padera; Roderick T. Bronson; Neal I. Lindeman; David C. Christiani; Xihong Lin; Geoffrey I. Shapiro; Pasi A. Jänne; Bruce E. Johnson; Matthew Meyerson; David J. Kwiatkowski

Germline mutation in serine/threonine kinase 11 (STK11, also called LKB1) results in Peutz–Jeghers syndrome, characterized by intestinal hamartomas and increased incidence of epithelial cancers. Although uncommon in most sporadic cancers, inactivating somatic mutations of LKB1 have been reported in primary human lung adenocarcinomas and derivative cell lines. Here we used a somatically activatable mutant Kras-driven model of mouse lung cancer to compare the role of Lkb1 to other tumour suppressors in lung cancer. Although Kras mutation cooperated with loss of p53 or Ink4a/Arf (also known as Cdkn2a) in this system, the strongest cooperation was seen with homozygous inactivation of Lkb1. Lkb1-deficient tumours demonstrated shorter latency, an expanded histological spectrum (adeno-, squamous and large-cell carcinoma) and more frequent metastasis compared to tumours lacking p53 or Ink4a/Arf. Pulmonary tumorigenesis was also accelerated by hemizygous inactivation of Lkb1. Consistent with these findings, inactivation of LKB1 was found in 34% and 19% of 144 analysed human lung adenocarcinomas and squamous cell carcinomas, respectively. Expression profiling in human lung cancer cell lines and mouse lung tumours identified a variety of metastasis-promoting genes, such as NEDD9, VEGFC and CD24, as targets of LKB1 repression in lung cancer. These studies establish LKB1 as a critical barrier to pulmonary tumorigenesis, controlling initiation, differentiation and metastasis.


The New England Journal of Medicine | 2014

Crizotinib in ROS1-Rearranged Non–Small-Cell Lung Cancer

Alice T. Shaw; Sai-Hong Ignatius Ou; Yung-Jue Bang; D. Ross Camidge; Benjamin Solomon; Ravi Salgia; Gregory J. Riely; Marileila Varella-Garcia; Geoffrey I. Shapiro; Daniel B. Costa; Robert C. Doebele; Long P. Le; Zongli Zheng; Weiwei Tan; Patricia Stephenson; S. Martin Shreeve; Lesley M. Tye; James G. Christensen; Keith D. Wilner; Jeffrey W. Clark; A. John Iafrate

BACKGROUND Chromosomal rearrangements of the gene encoding ROS1 proto-oncogene receptor tyrosine kinase (ROS1) define a distinct molecular subgroup of non-small-cell lung cancers (NSCLCs) that may be susceptible to therapeutic ROS1 kinase inhibition. Crizotinib is a small-molecule tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK), ROS1, and another proto-oncogene receptor tyrosine kinase, MET. METHODS We enrolled 50 patients with advanced NSCLC who tested positive for ROS1 rearrangement in an expansion cohort of the phase 1 study of crizotinib. Patients were treated with crizotinib at the standard oral dose of 250 mg twice daily and assessed for safety, pharmacokinetics, and response to therapy. ROS1 fusion partners were identified with the use of next-generation sequencing or reverse-transcriptase-polymerase-chain-reaction assays. RESULTS The objective response rate was 72% (95% confidence interval [CI], 58 to 84), with 3 complete responses and 33 partial responses. The median duration of response was 17.6 months (95% CI, 14.5 to not reached). Median progression-free survival was 19.2 months (95% CI, 14.4 to not reached), with 25 patients (50%) still in follow-up for progression. Among 30 tumors that were tested, we identified 7 ROS1 fusion partners: 5 known and 2 novel partner genes. No correlation was observed between the type of ROS1 rearrangement and the clinical response to crizotinib. The safety profile of crizotinib was similar to that seen in patients with ALK-rearranged NSCLC. CONCLUSIONS In this study, crizotinib showed marked antitumor activity in patients with advanced ROS1-rearranged NSCLC. ROS1 rearrangement defines a second molecular subgroup of NSCLC for which crizotinib is highly active. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).


Cancer Research | 2007

PF00299804, an Irreversible Pan-ERBB Inhibitor, Is Effective in Lung Cancer Models with EGFR and ERBB2 Mutations that Are Resistant to Gefitinib

Jeffrey A. Engelman; Kreshnik Zejnullahu; Christopher Michael Gale; Eugene Lifshits; Andrea J. Gonzales; Takeshi Shimamura; Feng Zhao; Patrick W. Vincent; George N. Naumov; James E. Bradner; Irene W. Althaus; Leena Gandhi; Geoffrey I. Shapiro; James M. Nelson; John V. Heymach; Matthew Meyerson; Kwok-Kin Wong; Pasi A. Jänne

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors gefitinib and erlotinib are effective treatments for a subset of non-small cell lung cancers. In particular, cancers with specific EGFR-activating mutations seem to be the most sensitive to these agents. However, despite their initial response, such cancers almost invariably develop resistance. In 50% of such cancers, a secondary EGFR mutation, T790M, has been identified that renders gefitinib and erlotinib ineffective inhibitors of EGFR kinase activity. Thus, there is a clinical need to develop novel EGFR inhibitors that can effectively inactivate T790M-containing EGFR proteins. In this study, we evaluate the effectiveness of a novel compound, PF00299804, an irreversible pan-ERBB inhibitor. The results from these studies show that PF00299804 is a potent inhibitor of EGFR-activating mutations as well as the EGFR T790M resistance mutation both in vitro and in vivo. Additionally, PF00299804 is a highly effective inhibitor of both the wild-type ERBB2 and the gefitinib-resistant oncogenic ERBB2 mutation identified in lung cancers. These preclinical evaluations support further clinical development of PF00299804 for cancers with mutations and/or amplifications of ERBB family members.


The New England Journal of Medicine | 2010

Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor.

James E. Butrynski; David R. D'Adamo; Jason L. Hornick; Dal Cin P; Cristina R. Antonescu; Jhanwar Sc; Marc Ladanyi; Marzia Capelletti; Scott J. Rodig; Nikhil H. Ramaiya; E. L. Kwak; Jeffrey W. Clark; Keith D. Wilner; James G. Christensen; Pasi A. Jänne; Robert G. Maki; George D. Demetri; Geoffrey I. Shapiro

Inflammatory myofibroblastic tumor (IMT) is a distinctive mesenchymal neoplasm characterized by a spindle-cell proliferation with an inflammatory infiltrate. Approximately half of IMTs carry rearrangements of the anaplastic lymphoma kinase (ALK) locus on chromosome 2p23, causing aberrant ALK expression. We report a sustained partial response to the ALK inhibitor crizotinib (PF-02341066, Pfizer) in a patient with ALK-translocated IMT, as compared with no observed activity in another patient without the ALK translocation. These results support the dependence of ALK-rearranged tumors on ALK-mediated signaling and suggest a therapeutic strategy for genomically identified patients with the aggressive form of this soft-tissue tumor. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).


Cancer Discovery | 2013

Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors

Esra A. Akbay; Shohei Koyama; Julian Carretero; Abigail Altabef; Jeremy H. Tchaicha; Camilla L. Christensen; Oliver R. Mikse; Andrew D. Cherniack; Ellen M. Beauchamp; Trevor J. Pugh; Matthew D. Wilkerson; Peter E. Fecci; Mohit Butaney; Jacob B. Reibel; Margaret Soucheray; Travis J. Cohoon; Pasi A. Jänne; Matthew Meyerson; D. Neil Hayes; Geoffrey I. Shapiro; Takeshi Shimamura; Lynette M. Sholl; Scott J. Rodig; Gordon J. Freeman; Peter S. Hammerman; Glenn Dranoff; Kwok-Kin Wong

UNLABELLED The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition. SIGNIFICANCE We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape.

Collaboration


Dive into the Geoffrey I. Shapiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott J. Rodig

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge