Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan E. E. Rogers is active.

Publication


Featured researches published by Alan E. E. Rogers.


Publications of the Astronomical Society of Australia | 2013

The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

S. J. Tingay; R. Goeke; Judd D. Bowman; D. Emrich; S. M. Ord; D. A. Mitchell; M. F. Morales; T. Booler; B. Crosse; R. B. Wayth; C. J. Lonsdale; S. E. Tremblay; D. Pallot; T. Colegate; Andreas Wicenec; N. Kudryavtseva; W. Arcus; David G. Barnes; G. Bernardi; F. Briggs; S. Burns; John D. Bunton; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; L. deSouza; B. M. Gaensler; L. J. Greenhill; Peter Hall; B. J. Hazelton

The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.


Nature | 2008

Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre

Sheperd S. Doeleman; Jonathan Weintroub; Alan E. E. Rogers; R. L. Plambeck; Robert Freund; Remo P. J. Tilanus; Per Friberg; L. M. Ziurys; James M. Moran; B. E. Corey; K. Young; Daniel L. Smythe; Michael Titus; D. P. Marrone; R. J. Cappallo; Douglas C.-J. Bock; Geoffrey C. Bower; Richard A. Chamberlin; Gary R. Davis; T. P. Krichbaum; James W. Lamb; H. L. Maness; Arthur Niell; Alan L. Roy; Peter A. Strittmatter; D. Werthimer; Alan R. Whitney; David P. Woody

The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering. Here we report observations at a wavelength of 1.3 mm that set a size of microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.


Science | 2012

Jet-launching structure resolved near the supermassive black hole in m87

Sheperd S. Doeleman; Vincent L. Fish; David E. Schenck; Christopher Beaudoin; R. Blundell; Geoffrey C. Bower; Avery E. Broderick; Richard A. Chamberlin; Robert Freund; Per Friberg; M. A. Gurwell; Paul T. P. Ho; Mareki Honma; Makoto Inoue; T. P. Krichbaum; James W. Lamb; Abraham Loeb; Colin J. Lonsdale; D. P. Marrone; James M. Moran; Tomoaki Oyama; R. L. Plambeck; Rurik A. Primiani; Alan E. E. Rogers; Daniel L. Smythe; Jason SooHoo; Peter A. Strittmatter; Remo P. J. Tilanus; Michael Titus; Jonathan Weintroub

Black Hole Close-Up M87 is a giant elliptical galaxy about 55 million light-years away. Accretion of matter onto its central massive black hole is thought to power its relativistic jet. To probe structures on scales similar to that of the black holes event horizon, Doeleman et al. (p. 355, published online 27 September) observed the relativistic jet in M87 at a wavelength of 1.3 mm using the Event Horizon Telescope, a special purpose, very-long-baseline interferometry array consisting of four radio telescopes located in Arizona, California, and Hawaii. The analysis suggests that the accretion disk that powers the jet orbits in the same direction as the spin of the black hole. High-resolution observations of the jet in the galaxy M87 probe structures very close to the galaxy’s central black hole. Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by the accretion of matter onto supermassive black holes. Although the measured width profiles of such jets on large scales agree with theories of magnetic collimation, the predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations, at a wavelength of 1.3 millimeters, of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 ± 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.


Publications of the Astronomical Society of Australia | 2013

Science with the Murchison Widefield Array

Judd D. Bowman; Iver H. Cairns; David L. Kaplan; Tara Murphy; Divya Oberoi; Lister Staveley-Smith; W. Arcus; David G. Barnes; G. Bernardi; F. Briggs; Shea Brown; John D. Bunton; Adam J. Burgasser; R. J. Cappallo; Shami Chatterjee; B. E. Corey; Anthea J. Coster; Avinash A. Deshpande; L. deSouza; D. Emrich; Philip J. Erickson; R. Goeke; B. M. Gaensler; L. J. Greenhill; L. Harvey-Smith; B. J. Hazelton; David Herne; Jacqueline N. Hewitt; M. Johnston-Hollitt; J. Kasper

Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.


Nature | 2010

A lower limit of δz>0.06 for the duration of the reionization epoch

Judd D. Bowman; Alan E. E. Rogers

Observations of the 21-centimetre line of atomic hydrogen in the early Universe directly probe the history of the reionization of the gas between galaxies. The observations are challenging, though, because of the low expected signal strength (∼10 mK), and contamination by strong (>100 K) foreground synchrotron emission in the Milky Way and extragalactic continuum sources. If reionization happened rapidly, there should be a characteristic signature visible against the smooth foreground in an all-sky spectrum. Here we report an all-sky spectrum between 100 and 200 MHz, corresponding to the redshift range 6 < z < 13 for the 21-centimetre line. The data exclude a rapid reionization timescale of Δz < 0.06 at the 95% confidence level.


Science | 1971

Quasars Revisited: Rapid Time Variations Observed Via Very-Long-Baseline Interferometry

Alan R. Whitney; Irwin I. Shapiro; Alan E. E. Rogers; D. S. Robertson; Curtis A. Knight; T. A. Clark; Richard M. Goldstein; Gerard E. Marandino; Nancy R. Vandenberg

Recent Goldstone-Haystack radio interferometric observations of the quasars 3C 279 and 3C 273 reveal rapid variations in their fine structure. Most notably, the data for 3C 279, interpreted in terms of a symmetric double-source model and the accepted red-shift distance, indicate differential proper motion corresponding to an apparent speed about ten times that of light. A number of possible mechanisms that might give rise to such an apparent speed are considered; although several may be plausible, no definitive choice can be made on the basis of present evidence. More interferometric observations of quasars are clearly needed to clarify their structure and internal kinematics.


The Astrophysical Journal | 2011

1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES

Vincent L. Fish; Sheperd S. Doeleman; Christopher Beaudoin; Raymond Blundell; David E. Bolin; Geoffrey C. Bower; Richard A. Chamberlin; Robert Freund; Per Friberg; M. A. Gurwell; Mareki Honma; Makoto Inoue; T. P. Krichbaum; James W. Lamb; D. P. Marrone; James M. Moran; Tomoaki Oyama; R. L. Plambeck; Rurik A. Primiani; Alan E. E. Rogers; Daniel L. Smythe; Jason SooHoo; Peter A. Strittmatter; Remo P. J. Tilanus; Michael Titus; Jonathan Weintroub; Melvyn C. H. Wright; David P. Woody; K. Young; L. M. Ziurys

Sagittarius A*, the ~4 × 10^6 M_⊙ black hole candidate at the Galactic center, can be studied on Schwarzschild radius scales with (sub)millimeter wavelength very long baseline interferometry (VLBI). We report on 1.3 mm wavelength observations of Sgr A* using a VLBI array consisting of the JCMT on Mauna Kea, the Arizona Radio Observatory’s Submillimeter Telescope on Mt. Graham in Arizona, and two telescopes of the CARMA array at Cedar Flat in California. Both Sgr A* and the quasar calibrator 1924−292 were observed over three consecutive nights, and both sources were clearly detected on all baselines. For the first time, we are able to extract 1.3mmVLBI interferometer phase information on Sgr A* through measurement of closure phase on the triangle of baselines. On the third night of observing, the correlated flux density of Sgr A* on all VLBI baselines increased relative to the first two nights, providing strong evidence for time-variable change on scales of a few Schwarzschild radii. These results suggest that future VLBI observations with greater sensitivity and additional baselines will play a valuable role in determining the structure of emission near the event horizon of Sgr A*.


IEEE Transactions on Geoscience and Remote Sensing | 1985

Precision Geodesy Using the Mark-III Very-Long-Baseline Interferometer System

T. A. Clark; B. E. Corey; James L. Davis; Gunnar Elgered; Thomas A. Herring; H. F. Hinteregger; Curtis A. Knight; James I. Levine; Goran Lundqvist; Chopo Ma; Edwin F. Nesman; Robert B. Phillips; Alan E. E. Rogers; B. O. Ronnang; J. W. Ryan; Bruce R. Schupler; D. B. Shaffer; I. I. Shapiro; Nancy R. Vandenberg; John C. Webber; Alan R. Whitney

Very-long-baseline interferometry (VLBI) has been used to make precise measurements of the vector separation between widely separated antennas. The system for acquiring and processing VLBI data known as Mark-III is described. Tests of the system show it to have millimeter-level accuracy on short baselines; measurements of baselines longer than a few hundred kilometers suggest that accuracy is limited by the uncertainty in the calibration of tropospheric path delay to the level of a few centimeters. VLBI experiments conducted between 1976 and 1983 have demonstrated the stability of the North American plate by showing that there is no change in the distance between easternl-California and Massachusetts at the level of a few millimeters per year or greater. Experiments made from 1980 to 1984 indicate that the distance from Massachusetts to Sweden is increasing by 1.7 ± 1 cm/year where the quoted standard deviation includes the estimated effects of systematic atic errors


Science | 1983

Very-Long-Baseline Radio Interferometry: The Mark III System for Geodesy, Astrometry, and Aperture Synthesis

Alan E. E. Rogers; R. J. Cappallo; H. F. Hinteregger; James I. Levine; Edwin F. Nesman; John C. Webber; Alan R. Whitney; T. A. Clark; Chopo Ma; J. W. Ryan; B. E. Corey; Charles C. Counselman; Tomas A. Herring; Irwin I. Shapiro; Curtis A. Knight; D. B. Shaffer; Nancy R. Vandenberg; Richard Lacasse; Robert Mauzy; Benno Rayhrer; Bruce R. Schupler; J. C. Pigg

The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.


The Astrophysical Journal | 2009

DETECTING FLARING STRUCTURES IN SAGITTARIUS A* WITH HIGH-FREQUENCY VLBI

Sheperd S. Doeleman; Vincent L. Fish; Avery E. Broderick; Abraham Loeb; Alan E. E. Rogers

The super-massive black hole candidate, Sagittarius A*, exhibits variability from radio to X-ray wavelengths on timescales that correspond to < 10 Schwarzschild radii. We survey the potential of millimeter wavelength very long baseline interferometry (VLBI) to detect and constrain time-variable structures that could give rise to such variations, focusing on a model in which an orbiting hot spot is embedded in an accretion disk. Nonimaging algorithms are developed that use interferometric closure quantities to test for periodicity, and applied to an ensemble of hot spot models that sample a range of parameter space. We find that structural periodicity in a wide range of cases can be detected on most potential VLBI arrays using modern VLBI instrumentation. Future enhancements of millimeter/submillimeter VLBI arrays including phased-array processors to aggregate VLBI station collecting area, increased bandwidth recording, and addition of new VLBI sites all significantly aid periodicity detection. The methods described herein can be applied to other models of Sagittarius A*, including jet outflows and magnetohydrodynamic accretion simulations.

Collaboration


Dive into the Alan E. E. Rogers's collaboration.

Top Co-Authors

Avatar

B. E. Corey

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Judd D. Bowman

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. J. Cappallo

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alan R. Whitney

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Goeke

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

T. A. Clark

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

F. Briggs

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge