Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan E. Smith is active.

Publication


Featured researches published by Alan E. Smith.


Gsa Today | 2008

Are we now living in the Anthropocene

Jan Zalasiewicz; Mark Williams; Alan E. Smith; Tiffany L. Barry; Angela L. Coe; Paul R. Bown; Patrick J. Brenchley; David Cantrill; Andrew S. Gale; Philip L. Gibbard; F. John Gregory; Mark W. Hounslow; Andrew Craig Kerr; Paul Nicholas Pearson; Robert W. O'b. Knox; John H. Powell; Colin N. Waters; J. E. A. Marshall; Michael Oates; Peter F. Rawson; P. Stone

The term Anthropocene, proposed and increasingly employed to denote the current interval of anthropogenic global environmental change, may be discussed on stratigraphic grounds. A case can be made for its consideration as a formal epoch in that, since the start of the Industrial Revolution, Earth has endured changes sufficient to leave a global stratigraphic signature distinct from that of the Holocene or of previous Pleistocene interglacial phases, encompassing novel biotic, sedimentary, and geochemical change. These changes, although likely only in their initial phases, are sufficiently distinct and robustly established for suggestions of a Holocene–Anthropocene boundary in the recent historical past to be geologically reasonable. The boundary may be defined either via Global Stratigraphic Section and Point (“golden spike”) locations or by adopting a numerical date. Formal adoption of this term in the near future will largely depend on its utility, particularly to earth scientists working on late Holocene successions. This datum, from the perspective of the far future, will most probably approximate a distinctive stratigraphic boundary.


Human Gene Therapy | 1999

PEGylation of Adenovirus with Retention of Infectivity and Protection from Neutralizing Antibody in Vitro and in Vivo

Catherine R. O'Riordan; Amy Lachapelle; Cristina Delgado; Vincent Parkes; Samuel C. Wadsworth; Alan E. Smith; G. E. Francis

Replication-defective recombinant adenovirus (Ad) vectors are under development for a wide variety of gene therapy indications. A potential limiting factor associated with virus gene therapy requiring repeated treatment is the development of a humoral immune response to the vector by the host. In animal models, there is a dose-dependent rise in neutralizing antibodies after primary vector administration, which can preclude effective repeat administration. The strategy we have developed to circumvent the neutralization of adenovirus vectors by antibodies is to mask their surface by covalent attachment of the polymer polyethylene glycol (PEG). Covalent attachment of PEG to the surface of the adenovirus was achieved primarily by using activated PEG tresylmonomethoxypolyethylene glycol (TMPEG), which reacts preferentially with the epsilon-amino terminal of lysine residues. We show that the components of the capsid that elicit a neutralizing immune response, i.e., hexon, fiber, and penton base, are also the main targets for PEGylation. Several protocols for PEGylation of an adenovirus vector were evaluated with respect to retention of virus infectivity and masking from antibody neutralization. We show that covalent attachment of polymer to the surface of the adenovirus can be achieved with retention of infectivity. We show further that PEG-modified adenovirus can be protected from antibody neutralization in the lungs of mice with high antibody titers to adenovirus, suggesting that PEGylation will improve the ability to administer Ad vectors on a repeated basis.


Nature Genetics | 1994

Safety and efficacy of repetitive adenovirus-mediated transfer of CFTR cDNA to airway epithelia of primates and cotton rats.

Joseph Zabner; Deanna M. Petersen; Aurita P. Puga; Scott M. Graham; Larry A. Couture; Lynn D. Keyes; Mike J. Lukason; Judith A. St. George; Richard J. Gregory; Alan E. Smith; Michael J. Welsh

Gene therapy for cystic fibrosis (CF) will require the safe transfer of CFTR cDNA to airway epithelia in vivo. We showed previously that a recombinant adenovirus, Ad2/ CFTR–1, expresses CFTR in vitro. As adenovirus rarely integrates, treatment will require repeated vector administration. We applied Ad2/CFTR-1 to intrapulmonary airway epithelia of cotton rats and nasal epithelia of Rhesus monkeys. In both species we detected CFTR mRNA and protein after repeated administration and in monkeys, protein was detected six weeks after repeat administration. The vector did not replicate and was rapidly cleared. Despite an antibody response, there was no evidence of a local or systemic inflammatory response after repeat administration. These data indicate that repetitive administration of Ad2/CFTR-1 is both safe and efficacious.


Journal of Clinical Investigation | 1992

Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia

Gerene M. Denning; Lynda S. Ostedgaard; Seng H. Cheng; Alan E. Smith; Michael Welsh

Cystic fibrosis is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). To further our understanding of CFTRs function and regulation, we used confocal immunofluorescence microscopy to localize CFTR in cells stained with monoclonal antibodies against different regions of the protein: the R (regulatory) domain (M13-1), the COOH terminus (M1-4), and a predicted extracellular domain (M6-4). All three antibodies immunoprecipitated a 155-170-kD polypeptide from cells expressing CFTR. Each antibody stained HeLa and 3T3 cells expressing recombinant CFTR, but not cells lacking endogenous CFTR: HeLa, NIH-3T3, and endothelial cells. For localization studies, we used epithelial cell lines that express endogenous CFTR and have a cAMP-activated apical Cl- permeability: T84, CaCo2, and HT29 clone 19A. Our results demonstrate that CFTR is an apical membrane protein in these epithelial cells because (a) staining for CFTR resembled staining for several apical membrane markers, but differed from staining for basolateral membrane proteins; (b) thin sections of cell monolayers show staining at the apical membrane; and (c) M6-4, an extracellular domain antibody, stained the apical surface of nonpermeabilized cells. Our results do not exclude the possibility that CFTR is also located beneath the apical membrane. Increasing intracellular cAMP levels did not change the apical membrane staining pattern for CFTR. Moreover, insertion of channels by vesicle fusion with the apical membrane was not required for cAMP-mediated increases in apical membrane Cl- conductance. These results indicate that CFTR is located in the apical plasma membrane of Cl(-)-secreting epithelia, a result consistent with the conclusion that Cl TR is an apical membrane chloride channel.


Journal of Clinical Investigation | 1997

Comparison of DNA-lipid complexes and DNA alone for gene transfer to cystic fibrosis airway epithelia in vivo.

Joseph Zabner; Seng H. Cheng; David P. Meeker; Jan Launspach; Rosemary Balfour; Michael A. Perricone; James E. Morris; John Marshall; Al Fasbender; Alan E. Smith; Michael J. Welsh

Cationic lipids show promise as vectors for transfer of CFTR cDNA to airway epithelia of patients with cystic fibrosis (CF). However, previous studies have not compared the effect of DNA-lipid to DNA alone. Recently, we developed a formulation of plasmid encoding CFTR (pCF1-CFTR) and cationic lipid (GL-67:DOPE) that generated greater gene transfer in mouse lung than previously described DNA-lipid vectors. Therefore, we tested the hypothesis that DNA-lipid complexes were more effective than DNA alone at transferring CFTR cDNA to airway epithelia in vivo. We administered complexes of DNA-lipid to one nostril and DNA alone to the other nostril in a randomized, double-blind study. Electrophysiologic measurements showed that DNA-lipid complexes partially corrected the Cl- transport defect. Importantly, the pCF1-CFTR plasmid alone was at least as effective as complexes of DNA with lipid. Measurements of vector-specific CFTR transcripts also showed gene transfer with both DNA-lipid and DNA alone. These results indicate that nonviral vectors can transfer CFTR cDNA to airway epithelia and at least partially restore the Cl- transport defect characteristic of CF. However, improvements in the overall efficacy of gene transfer are required to develop a treatment for CF.


Philosophical Transactions of the Royal Society A | 2011

Stratigraphy of the Anthropocene

Jan Zalasiewicz; Mark Williams; R Fortey; Alan E. Smith; Tiffany L. Barry; Angela L. Coe; Paul R. Bown; Peter F. Rawson; Andrew S. Gale; Philip L. Gibbard; Fj Gregory; Mark W. Hounslow; Andrew Craig Kerr; Paul Nicholas Pearson; Robert W. O'b. Knox; John H. Powell; Colin N. Waters; J. E. A. Marshall; Michael Oates; P. Stone

The Anthropocene, an informal term used to signal the impact of collective human activity on biological, physical and chemical processes on the Earth system, is assessed using stratigraphic criteria. It is complex in time, space and process, and may be considered in terms of the scale, relative timing, duration and novelty of its various phenomena. The lithostratigraphic signal includes both direct components, such as urban constructions and man-made deposits, and indirect ones, such as sediment flux changes. Already widespread, these are producing a significant ‘event layer’, locally with considerable long-term preservation potential. Chemostratigraphic signals include new organic compounds, but are likely to be dominated by the effects of CO2 release, particularly via acidification in the marine realm, and man-made radionuclides. The sequence stratigraphic signal is negligible to date, but may become geologically significant over centennial/millennial time scales. The rapidly growing biostratigraphic signal includes geologically novel aspects (the scale of globally transferred species) and geologically will have permanent effects.


Journal of Clinical Investigation | 1995

Adenoviral-mediated gene transfer to fetal pulmonary epithelia in vitro and in vivo.

Paul B. McCray; K Armstrong; Joseph Zabner; D W Miller; Gary A. Koretzky; Larry A. Couture; J E Robillard; Alan E. Smith; Michael Welsh

Vector-mediated gene transfer offers a direct method of correcting genetic pulmonary diseases and might also be used to correct temporary abnormalities associated with acquired, nongenetic disorders. Because the fetus or newborn may be a more immune tolerant host for gene transfer using viral vectors, we used replication defective recombinant adenoviral vectors to test the feasibility of gene transfer to the fetal pulmonary epithelium in vitro and in vivo. Both proximal and distal epithelial cells in cultured fetal lung tissues from rodents and humans diffusely expressed the lacZ transgene 3 d after viral infection. In vivo gene delivery experiments were performed in fetal mice and lambs. Delivery of Ad2/CMV-beta Gal to the amniotic fluid in mice produced intense transgene expression in the fetal epidermis and amniotic membranes, some gastrointestinal expression, but no significant airway epithelial expression. When we introduced the adenoviral vector directly into the trachea of fetal lambs, the lacZ gene was expressed in the tracheal, bronchial, and distal pulmonary epithelial cells 3 d after viral infection. Unexpectedly, reactive hyperplasia and squamous metaplasia were noted in epithelia expressing lacZ in the trachea, but not in the distal lung of fetal lambs. 1 wk after infection, adenovirus-treated fetuses developed inflammatory cell infiltrates in the lung tissue with CD4, CD8, IgM, and granulocyte/macrophage positive immune effector cells. Transgene expression faded coincident with inflammation and serologic evidence of antiadenoviral antibody production. While these studies document the feasibility of viral-mediated gene transfer in the prenatal lung, they indicate that immunologic responses to E1-deleted recombinant adenoviruses limit the duration of transgene expression.


Human Gene Therapy | 2001

Aerosol and Lobar Administration of a Recombinant Adenovirus to Individuals with Cystic Fibrosis. II. Transfection Efficiency in Airway Epithelium

Michael A. Perricone; James E. Morris; Karen Pavelka; Malinda S. Plog; Brian O'Sullivan; Patricia M. Joseph; Henry L. Dorkin; Allen Lapey; Rosemary Balfour; David P. Meeker; Alan E. Smith; Samuel C. Wadsworth; Judith A. St. George

A phase I clinical trial was conducted in which recombinant adenovirus containing the cystic fibrosis trans-membrane regulator (CFTR) (Ad2/CFTR) was administered by bronchoscopic instillation or aerosolization to the lungs of cystic fibrosis (CF) patients. In this paper, we evaluate the efficiency of Ad2/CFTR-mediated transduction of bronchial airway cells. The ability of an Ad2/CFTR vector to transduce airway cells was first evaluated in patients to whom the vector was administered by bronchoscopic instillation. Cells at the administration site were collected 2 days after treatment by bronchoscopic brushing. Ad2-specific CFTR DNA was detected in four of five individuals by PCR, and Ad2-specific CFTR RNA was detected in three of five individuals by RT-PCR. Ad2/CFTR-mediated transduction of airway epithelial cells was then determined in CF individuals receiving this vector by aerosol inhalation. Ad2-specific CFTR DNA was detected in 13 of 13 individuals 2 days after aerosolization, and in 3 of 5 individuals 7 days after aerosolization. Ad2-specific RNA was detected in 4 of 13 individuals on day 2, but was not detected in the 5 individuals tested on day 7. The percentage of airway epithelial cells containing nuclear-localized vector DNA was < or =2.4% as determined by fluorescence in situ hybridization (FISH). However, in some cases, a high percentage of nonepithelial mononuclear cells or squamous metaplastic epithelial cells was infected with the adenoviral vector. In conclusion, aerosol administration is a feasible means to distribute adenoviral vectors throughout the conducting airways, but improvements in adenovirus-mediated transduction of airway epithelial cells are necessary before gene therapy for CF will be effective.


Human Gene Therapy | 2001

Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. I. Methods, safety, and clinical implications

Patricia M. Joseph; Brian O'Sullivan; Allen Lapey; Henry L. Dorkin; Joseph Oren; Rosemary Balfour; Michael A. Perricone; Mireille Rosenberg; Samuel C. Wadsworth; Alan E. Smith; Judith A. St. George; David P. Meeker

Cystic fibrosis (CF), an autosomal recessive disorder resulting from mutations in the cystic fibrosis trans-membrane conductance regulator (CFTR) gene, is the most common lethal genetic illness in the Caucasian population. Gene transfer to airway epithelium, using adenoviruses containing normal CFTR cDNA, leads to transient production of CFTR mRNA and, in some studies, to correction of the airway epithelial ion transport defect caused by dysfunctional CFTR. Inflammatory responses to the adenoviral vector have been reported, particularly at high viral titers. We evaluated the effects of adenovirus-mediated CFTR gene transfer to airway epithelium in 36 subjects with CF (34 individuals, 2 of whom received two separate doses of vector), 20 by lobar instillation and 16 by aerosol administration. Doses ranged from 8 x 10(6) to 2.5 x 10(10) infective units (IU), in 0.5-log increments. After lobar administration of low doses there were occasional reports of cough, low-grade temperature, and myalgias. At the highest lobar dose (2.5 x 10(9) IU) two of three patients had transient myalgias, fever, and increased sputum production with obvious infiltrates on CT scan. After aerosol administration there were no significant systemic symptoms until the 2.5 x 10(10) IU dose, when both patients experienced myalgias and fever that resolved within 24 hr. There were no infiltrates seen on chest CT scans in any of the patients in the aerosol administration group. There were no consistent changes in pulmonary function tests or any significant rise in serum IgG or neutralizing antibodies in patients from either group. Serum, sputum, and nasal cytokines, measured before and after vector administration, showed no correlation with adenoviral dose. Gene transfer to lung cells was inefficient and expression was transient. Cells infected with the vector included mononuclear inflammatory cells as well as cuboidal and columnar epithelial cells. In summary, we found no consistent immune response, no evidence of viral shedding, and no consistent change in pulmonary function in response to adenovirus-mediated CFTR gene transfer. At higher doses there was a mild, nonspecific inflammatory response, as evidenced by fevers and myalgias. Overall, vector administration was tolerated but transfer of CFTR cDNA was inefficient and transgene expression was transient for the doses and method of administration used here.


Methods in Enzymology | 1998

CATIONIC LIPID FORMULATIONS FOR INTRACELLULAR GENE DELIVERY OF CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR TO AIRWAY EPITHELIA

Seng Hing Cheng; John Marshall; Ronald K. Scheule; Alan E. Smith

Publisher Summary This chapter describes cationic lipid formulations for intracellular gene delivery of cystic fibrosis transmembrane conductance regulator to airway epithelia. Much progress has been made in the recent past in terms of developing new cationic lipid structures with increased potency and activity. The understanding of cationic lipid structure–activity relationships and cellular barriers to gene delivery increases potent cationic lipid structures. In the absence of a detailed understanding of the mechanism of cationic lipid-mediated gene delivery, an extensive and essentially empirical optimization of the formulations is necessary. Gene transfer vectors that are being developed include recombinant viral vectors and nonviral, synthetic self-assembling systems, such as those formed using polycationic molecular conjugates and cationic lipids. Synthetic cationic lipids are used successfully for the delivery of a number of genes to a variety of different cell types in vitro and in vivo .

Collaboration


Dive into the Alan E. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devra P. Rich

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin N. Waters

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar

J. E. A. Marshall

National Oceanography Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge