Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan Engelman is active.

Publication


Featured researches published by Alan Engelman.


Science | 2008

Identification of host proteins required for HIV infection through a functional genomic screen

Abraham L. Brass; Derek M. Dykxhoorn; Yair Benita; Nan Yan; Alan Engelman; Ramnik J. Xavier; Judy Lieberman; Stephen J. Elledge

HIV-1 exploits multiple host proteins during infection. We performed a large-scale small interfering RNA screen to identify host factors required by HIV-1 and identified more than 250 HIV-dependency factors (HDFs). These proteins participate in a broad array of cellular functions and implicate new pathways in the viral life cycle. Further analysis revealed previously unknown roles for retrograde Golgi transport proteins (Rab6 and Vps53) in viral entry, a karyopherin (TNPO3) in viral integration, and the Mediator complex (Med28) in viral transcription. Transcriptional analysis revealed that HDF genes were enriched for high expression in immune cells, suggesting that viruses evolve in host cells that optimally perform the functions required for their life cycle. This effort illustrates the power with which RNA interference and forward genetics can be used to expose the dependencies of human pathogens such as HIV, and in so doing identify potential targets for therapy.


Nature | 2010

Retroviral intasome assembly and inhibition of DNA strand transfer

Stephen Hare; Saumya Shree Gupta; Eugene Valkov; Alan Engelman; Peter Cherepanov

Integrase is an essential retroviral enzyme that binds both termini of linear viral DNA and inserts them into a host cell chromosome. The structure of full-length retroviral integrase, either separately or in complex with DNA, has been lacking. Furthermore, although clinically useful inhibitors of HIV integrase have been developed, their mechanism of action remains speculative. Here we present a crystal structure of full-length integrase from the prototype foamy virus in complex with its cognate DNA. The structure shows the organization of the retroviral intasome comprising an integrase tetramer tightly associated with a pair of viral DNA ends. All three canonical integrase structural domains are involved in extensive protein–DNA and protein–protein interactions. The binding of strand-transfer inhibitors displaces the reactive viral DNA end from the active site, disarming the viral nucleoprotein complex. Our findings define the structural basis of retroviral DNA integration, and will allow modelling of the HIV-1 intasome to aid in the development of antiretroviral drugs.


The EMBO Journal | 1993

Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex.

Alan Engelman; Frederic D. Bushman; Robert Craigie

HIV‐1 integrase protein possesses the 3′ processing and DNA strand transfer activities that are required to integrate HIV DNA into a host chromosome. The N‐, C‐terminal and core domains of integrase are necessary for both activities in vitro. We find that certain pairs of mutant integrase proteins, which are inactive when each protein is assayed alone, can support near wild type levels of activity when both proteins are present together in the reaction mixture. This complementation implies that HIV‐1 integrase functions as a multimer and has enabled us to probe the organization of the functional domains within active mixed multimers. We have identified a minimal set of functional integrase domains that are sufficient for 3′ processing and DNA strand transfer and find that some domains are contributed in trans by separate monomers within the functional complex.


Journal of Virology | 2007

Human Immunodeficiency Virus Type 1 cDNAs Produced in the Presence of APOBEC3G Exhibit Defects in Plus-Strand DNA Transfer and Integration

Jean L. Mbisa; Rebekah Barr; James A. Thomas; Nick Vandegraaff; Irene J. Dorweiler; Evguenia S. Svarovskaia; William L. Brown; Louis M. Mansky; Robert J. Gorelick; Reuben S. Harris; Alan Engelman; Vinay K. Pathak

ABSTRACT Encapsidation of host restriction factor APOBEC3G (A3G) into vif-deficient human immunodeficiency virus type 1 (HIV-1) blocks virus replication at least partly by C-to-U deamination of viral minus-strand DNA, resulting in G-to-A hypermutation. A3G may also inhibit HIV-1 replication by reducing viral DNA synthesis and inducing viral DNA degradation. To gain further insight into the mechanisms of viral inhibition, we examined the metabolism of A3G-exposed viral DNA. We observed that an overall 35-fold decrease in viral infectivity was accompanied by a five- to sevenfold reduction in viral DNA synthesis. Wild-type A3G induced an additional fivefold decrease in the amount of viral DNA that was integrated into the host cell genome and similarly reduced the efficiency with which HIV-1 preintegration complexes (PICs) integrated into a target DNA in vitro. The A3G C-terminal catalytic domain was required for both of these antiviral activities. Southern blotting analysis of PICs showed that A3G reduced the efficiency and specificity of primer tRNA processing and removal, resulting in viral DNA ends that are inefficient substrates for integration and plus-strand DNA transfer. However, the decrease in plus-strand DNA transfer did not account for all of the observed decrease in viral DNA synthesis associated with A3G. These novel observations suggest that HIV-1 cDNA produced in the presence of A3G exhibits defects in primer tRNA processing, plus-strand DNA transfer, and integration.


Cell Host & Microbe | 2010

Flexible Use of Nuclear Import Pathways by HIV-1

KyeongEun Lee; Zandrea Ambrose; Thomas D. Martin; Ilker Oztop; Alok Mulky; John G. Julias; Nick Vandegraaff; Joerg G. Baumann; Rui Wang; Wendy Yuen; Taichiro Takemura; Kenneth Shelton; Ichiro Taniuchi; Yuan Li; Joseph Sodroski; Dan R. Littman; John M. Coffin; Stephen H. Hughes; Derya Unutmaz; Alan Engelman; Vineet N. KewalRamani

HIV-1 replication requires transport of nascent viral DNA and associated virion proteins, the retroviral preintegration complex (PIC), into the nucleus. Too large for passive diffusion through nuclear pore complexes (NPCs), PICs use cellular nuclear transport mechanisms and nucleoporins (NUPs), the NPC components that permit selective nuclear-cytoplasmic exchange, but the details remain unclear. Here we identify a fragment of the cleavage and polyadenylation factor 6, CPSF6, as a potent inhibitor of HIV-1 infection. When enriched in the cytoplasm, CPSF6 prevents HIV-1 nuclear entry by targeting the viral capsid (CA). HIV-1 harboring the N74D mutation in CA fails to interact with CPSF6 and evades the nuclear import restriction. Interestingly, whereas wild-type HIV-1 requires NUP153, N74D HIV-1 mimics feline immunodeficiency virus nuclear import requirements and is more sensitive to NUP155 depletion. These findings reveal a remarkable flexibility in HIV-1 nuclear transport and highlight a single residue in CA as essential in regulating interactions with NUPs.


The EMBO Journal | 1997

Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking.

Timothy M. Jenkins; Dominic Esposito; Alan Engelman; Robert Craigie

Analysis of the crystal structure of HIV‐1 integrase reveals a cluster of lysine residues near the active site. Using site‐directed mutagenesis and photo‐crosslinking we find that Lys156 and Lys159 are critical for the functional interaction of integrase with viral DNA. Mutation of Lys156 or Lys159 to glutamate led to a loss of both 3′ processing and strand transfer activities in vitro while maintaining the ability to interact with nonspecific DNA and support disintegration. However, mutation of both residues to glutamate produced a synergistic effect eliminating nearly all nonspecific DNA interaction and disintegration activity. In addition, virus containing either of these changes was replication‐defective at the step of integration. Photo‐crosslinking, using 5‐iododeoxyuracil‐substituted oligonucleotides, suggests that Lys159 interacts at the N7 position of the conserved deoxyadenosine adjacent to the scissile phosphodiester bond of viral DNA. Sequence conservation throughout retroviral integrases and certain bacterial transposases (e.g. Tn10/IS10) supports the premise that within those families of polynucleotidyl transferases, these residues are strategic for DNA interaction.


Nature Structural & Molecular Biology | 2005

Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75

Peter Cherepanov; Zhen-Yu J. Sun; Shaila Rahman; Goedele N. Maertens; Gerhard Wagner; Alan Engelman

Lens epithelium-derived growth factor (LEDGF)/p75 is the dominant binding partner of HIV-1 integrase (IN) in human cells. We have determined the NMR structure of the integrase-binding domain (IBD) in LEDGF and identified amino acid residues essential for the interaction. The IBD is a compact right-handed bundle composed of five α-helices. Based on folding topology, the IBD is structurally related to a diverse family of α-helical proteins that includes eukaryotic translation initiation factor eIF4G and karyopherin-β. LEDGF residues essential for the interaction with IN were localized to interhelical loop regions of the bundle structure. Interaction-defective IN mutants were previously shown to cripple replication although they retained catalytic function. The initial structure determination of a host cell factor that tightly binds to a retroviral enzyme lays the groundwork for understanding enzyme-host interactions important for viral replication.


PLOS Pathogens | 2008

The Lentiviral Integrase Binding Protein LEDGF/p75 and HIV-1 Replication

Alan Engelman; Peter Cherepanov

Retroviral replication proceeds through a stable proviral DNA intermediate, and numerous host cell factors have been implicated in its formation. In particular, recent results have highlighted an important role for the integrase-interactor lens epithelium-derived growth factor (LEDGF)/p75 in lentiviral integration. Cells engineered to over-express fragments of LEDGF/p75 containing its integrase-binding domain but lacking determinants essential for chromatin association are refractory to HIV-1 infection. Furthermore, both the levels of HIV-1 integration and the genomic distribution of the resultant proviruses are significantly perturbed in cells devoid of endogenous LEDGF/p75 protein. A strong bias towards integration along transcription units is a characteristic feature of lentiviruses. In the absence of LEDGF/p75, HIV-1 in large part loses that preference, displaying concomitant integration surges in the vicinities of CpG islands and gene promoter regions, elements naturally targeted by other types of retroviruses. Together, these findings highlight that LEDGF/p75 is an important albeit not strictly essential cofactor of lentiviral DNA integration, and solidify a role for chromatin-associated LEDGF/p75 as a receptor for lentiviral preintegration complexes. By now one of the best characterized virus–host interactions, the integrase-LEDGF/p75 interface opens a range of opportunities for lentiviral vector targeting for gene therapy applications as well as for the development of novel classes of antiretroviral drugs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structure-based modeling of the functional HIV-1 intasome and its inhibition

Lavanya Krishnan; Xiang Li; Hema Naraharisetty; Stephen Hare; Peter Cherepanov; Alan Engelman

The intasome is the basic recombination unit of retroviral integration, comprising the integrase protein and the ends of the viral DNA made by reverse transcription. Clinical inhibitors preferentially target the DNA-bound form of integrase as compared with the free protein, highlighting the critical requirement for detailed understanding of HIV-1 intasome structure and function. Although previous biochemical studies identified integrase residues that contact the DNA, structural details of protein–protein and protein–DNA interactions within the functional intasome were lacking. The recent crystal structure of the prototype foamy virus (PFV) integrase–viral DNA complex revealed numerous details of this related integration machine. Structures of drug-bound PFV intasomes moreover elucidated the mechanism of inhibitor action. Herein we present a model for the HIV-1 intasome assembled using the PFV structure as template. Our results pinpoint previously identified protein–DNA contacts within the quaternary structure and reveal hitherto unknown roles for Arg20 and Lys266 in DNA binding and integrase function. Models for clinical inhibitors bound at the HIV-1 integrase active site were also constructed and compared with previous studies. Our findings highlight the structural basis for HIV-1 integration and define the mechanism of its inhibition, which should help in formulating new drugs to inhibit viruses resistant to first-in-class compounds.


Nature Reviews Microbiology | 2012

The structural biology of HIV-1: mechanistic and therapeutic insights

Alan Engelman; Peter Cherepanov

Three-dimensional molecular structures can provide detailed information on biological mechanisms and, for cases in which the molecular function affects human health, can significantly aid in the development of therapeutic interventions. For almost 25 years, key components of the lentivirus HIV-1, including the envelope glycoproteins, the capsid and the replication enzymes reverse transcriptase, integrase and protease, have been scrutinized to near atomic-scale resolution. Moreover, structural analyses of the interactions between viral and host cell components have yielded key insights into the mechanisms of viral entry, chromosomal integration, transcription and egress from cells. Here, we review recent advances in HIV-1 structural biology, focusing on the molecular mechanisms of viral replication and on the development of new therapeutics.

Collaboration


Dive into the Alan Engelman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Craigie

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mamuka Kvaratskhelia

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge