Nick Vandegraaff
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nick Vandegraaff.
Journal of Virology | 2007
Jean L. Mbisa; Rebekah Barr; James A. Thomas; Nick Vandegraaff; Irene J. Dorweiler; Evguenia S. Svarovskaia; William L. Brown; Louis M. Mansky; Robert J. Gorelick; Reuben S. Harris; Alan Engelman; Vinay K. Pathak
ABSTRACT Encapsidation of host restriction factor APOBEC3G (A3G) into vif-deficient human immunodeficiency virus type 1 (HIV-1) blocks virus replication at least partly by C-to-U deamination of viral minus-strand DNA, resulting in G-to-A hypermutation. A3G may also inhibit HIV-1 replication by reducing viral DNA synthesis and inducing viral DNA degradation. To gain further insight into the mechanisms of viral inhibition, we examined the metabolism of A3G-exposed viral DNA. We observed that an overall 35-fold decrease in viral infectivity was accompanied by a five- to sevenfold reduction in viral DNA synthesis. Wild-type A3G induced an additional fivefold decrease in the amount of viral DNA that was integrated into the host cell genome and similarly reduced the efficiency with which HIV-1 preintegration complexes (PICs) integrated into a target DNA in vitro. The A3G C-terminal catalytic domain was required for both of these antiviral activities. Southern blotting analysis of PICs showed that A3G reduced the efficiency and specificity of primer tRNA processing and removal, resulting in viral DNA ends that are inefficient substrates for integration and plus-strand DNA transfer. However, the decrease in plus-strand DNA transfer did not account for all of the observed decrease in viral DNA synthesis associated with A3G. These novel observations suggest that HIV-1 cDNA produced in the presence of A3G exhibits defects in primer tRNA processing, plus-strand DNA transfer, and integration.
Cell Host & Microbe | 2010
KyeongEun Lee; Zandrea Ambrose; Thomas D. Martin; Ilker Oztop; Alok Mulky; John G. Julias; Nick Vandegraaff; Joerg G. Baumann; Rui Wang; Wendy Yuen; Taichiro Takemura; Kenneth Shelton; Ichiro Taniuchi; Yuan Li; Joseph Sodroski; Dan R. Littman; John M. Coffin; Stephen H. Hughes; Derya Unutmaz; Alan Engelman; Vineet N. KewalRamani
HIV-1 replication requires transport of nascent viral DNA and associated virion proteins, the retroviral preintegration complex (PIC), into the nucleus. Too large for passive diffusion through nuclear pore complexes (NPCs), PICs use cellular nuclear transport mechanisms and nucleoporins (NUPs), the NPC components that permit selective nuclear-cytoplasmic exchange, but the details remain unclear. Here we identify a fragment of the cleavage and polyadenylation factor 6, CPSF6, as a potent inhibitor of HIV-1 infection. When enriched in the cytoplasm, CPSF6 prevents HIV-1 nuclear entry by targeting the viral capsid (CA). HIV-1 harboring the N74D mutation in CA fails to interact with CPSF6 and evades the nuclear import restriction. Interestingly, whereas wild-type HIV-1 requires NUP153, N74D HIV-1 mimics feline immunodeficiency virus nuclear import requirements and is more sensitive to NUP155 depletion. These findings reveal a remarkable flexibility in HIV-1 nuclear transport and highlight a single residue in CA as essential in regulating interactions with NUPs.
Journal of Virology | 2006
Jenny L. Anderson; Edward M. Campbell; Xiaolu Wu; Nick Vandegraaff; Alan Engelman; Thomas J. Hope
ABSTRACT The primate TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. The TRIM5 proteins act early after virion entry and prevent viral reverse transcription products from accumulating. We recently found that proteasome inhibitors altered the rhesus monkey TRIM5α restriction of human immunodeficiency virus type 1 (HIV-1), allowing reverse transcription products to accumulate even though viral infection remained blocked. To assess whether sensitivity to proteasome inhibitors was a common feature of primate TRIM5 proteins, we conducted a similar analysis of restriction mediated by owl monkey TRIM-cyclophilin A (CypA) or human TRIM5α. Similar to rhesus monkey TRIM5α restriction, proteasome inhibition prevented owl monkey TRIM-CypA restriction of HIV-1 reverse transcription, even though HIV-1 infection and the output of 2-LTR circles remained impaired. Likewise, proteasome inhibition alleviated human TRIM5α restriction of N-tropic murine leukemia virus reverse transcription. Finally, HIV-1 reverse transcription products escaping rhesus TRIM5α restriction by proteasome inhibition were fully competent for integration in vitro, demonstrating that TRIM5α likely prevents the viral cDNA from accessing chromosomal target DNA. Collectively, these data indicate that the diverse TRIM5 proteins inhibit retroviral infection in multiple ways and that inhibition of reverse transcription products is not necessary for TRIM5-mediated restriction of retroviral infection.
Journal of Virology | 2001
Nick Vandegraaff; Raman Kumar; Christopher J. Burrell; Peng Li
ABSTRACT We have developed a novel linker-primer PCR assay for the detection and quantification of integrated human immunodeficiency virus type 1 (HIV) DNA. This assay reproducibly allowed the detection of 10 copies of integrated HIV DNA, in a background of 2 × 105cell equivalents of human chromosomal DNA, without amplifying extrachromosomal HIV DNA. We have used this assay and a near-synchronous one-step T-cell infection model to investigate the kinetics of viral DNA accumulation following HIV infection. We report here that integrated HIV DNA started accumulating 1 h after the first appearance of extrachromosomal viral DNA and accounted for ∼10% of the total HIV DNA synthesized in the first round of viral replication. These results highlight the efficient nature of integrase-mediated HIV integration in infected T cells.
Journal of Virology | 2007
Ming-Chieh Shun; Janet E. Daigle; Nick Vandegraaff; Alan Engelman
ABSTRACT Preintegration complexes (PICs) mediate retroviral integration, and recent results indicate an important role for the inner nuclear membrane protein emerin in orienting human immunodeficiency virus type 1 (HIV-1) PICs to chromatin for integration. Two other host cell proteins, the barrier-to-autointegration factor (BAF) and lamina-associated polypeptide 2α (LAP2α), seemed to play a similar preintegrative role for Moloney murine leukemia virus (MMLV) in addition to HIV-1. In contrast, we determined efficient HIV-1 and MMLV infection of HeLa-P4 cells following potent down-regulation of emerin, BAF, or LAP2α protein by using short interfering RNA. Mouse embryo fibroblasts ablated for emerin protein through gene knockout support the same level of HIV-1 infection as cells derived from wild-type littermate control animals. As the expression of human emerin in mouse knockout cells fails to affect the level of infectivity achieved in its absence, we conclude that HIV-1 efficiently infects cells in the absence of emerin protein and, by extension, that emerin is not a universally important regulator of HIV-1 infectivity.
Journal of Virology | 2005
Richard Lu; Nick Vandegraaff; Peter Cherepanov; Alan Engelman
ABSTRACT Retroviral integrases (INs) function in the context of preintegration complexes (PICs). Two conserved Lys residues in the N-terminal domain of human immunodeficiency virus type 1 (HIV-1) IN were analyzed here for their roles in integration and virus replication. Whereas HIV-1K46A grew like the wild type, HIV-1K34A was dead. Yet recombinant INK34A protein functioned in in vitro integration assays, and Vpr-INK34A efficiently transcomplemented the infectivity defect of an IN active site mutant virus in cells. HIV-1K34A was therefore similar to a number of previously characterized mutant viruses that failed to replicate despite encoding catalytically competent IN. To directly analyze mutant PIC function, a sensitive PCR-based integration assay was developed. HIV-1K34A and related mutants failed to support detectable levels (<1% of wild type) of integration. We therefore concluded that mutations like K34A disrupted higher-order interactions important for PIC function/maturation compared to the innate catalytic activity of IN enzyme.
Journal of Virological Methods | 2002
Raman Kumar; Nick Vandegraaff; Linda Mundy; Christopher J. Burrell; Peng Li
Integration of HIV-1 DNA is essential both for productive viral replication and for viral persistence in patients. Methods to measure specifically proviral HIV DNA are required for investigating the mechanisms of HIV integration, for screening novel integrase inhibitors in cell culture and for monitoring levels of persistent integrated viral DNA in patients. In this report, the linker primer polymerase chain reaction (LP-PCR) and Alu-PCR methods for the quantitation of integrated HIV-1 DNA have been modified and evaluated. Each of the two modified assays allowed the quantitative detection of 4 copies of integrated HIV DNA in presence of 2 x 10(5) cell-equivalents of human chromosomal DNA. The results show that proper DNA isolation procedures and the inclusion of appropriate controls in these assays are important for the accurate quantitation of integrated HIV DNA. With further improvements, it should be possible to use these methods as diagnostic tools to monitor closely the efficacy of antiretroviral therapy.
Genes & Development | 2007
Ming-Chieh Shun; Nidhanapati K. Raghavendra; Nick Vandegraaff; Janet E. Daigle; Siobhan Hughes; Paul Kellam; Peter Cherepanov; Alan Engelman
Virology | 2006
Nick Vandegraaff; Eric Devroe; Fanny Turlure; Pamela A. Silver; Alan Engelman
Proceedings of the National Academy of Sciences of the United States of America | 2006
Zhihai Si; Nick Vandegraaff; Colm O'hUigin; Byeongwoon Song; Wen Yuan; Chen Xu; Michel Perron; Xing Li; Wayne A. Marasco; Alan Engelman; Michael Dean; Joseph Sodroski