Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan H. Nagahara is active.

Publication


Featured researches published by Alan H. Nagahara.


Nature Medicine | 2009

Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease

Alan H. Nagahara; David A. Merrill; Giovanni Coppola; Shingo Tsukada; Brock E. Schroeder; Gideon M. Shaked; Ling Wang; Armin Blesch; Albert H. Kim; James M. Conner; Edward Rockenstein; Moses V. Chao; Edward H. Koo; Daniel H. Geschwind; Eliezer Masliah; Andrea A. Chiba; Mark H. Tuszynski

Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimers disease. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimers disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF gene delivery, when administered after disease onset, reverses synapse loss, partially normalizes aberrant gene expression, improves cell signaling and restores learning and memory. These outcomes occur independently of effects on amyloid plaque load. In aged rats, BDNF infusion reverses cognitive decline, improves age-related perturbations in gene expression and restores cell signaling. In adult rats and primates, BDNF prevents lesion-induced death of entorhinal cortical neurons. In aged primates, BDNF reverses neuronal atrophy and ameliorates age-related cognitive impairment. Collectively, these findings indicate that BDNF exerts substantial protective effects on crucial neuronal circuitry involved in Alzheimers disease, acting through amyloid-independent mechanisms. BDNF therapeutic delivery merits exploration as a potential therapy for Alzheimers disease.


Nature Reviews Drug Discovery | 2011

Potential therapeutic uses of BDNF in neurological and psychiatric disorders

Alan H. Nagahara; Mark H. Tuszynski

The growth factor brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase receptor type B (TRKB) are actively produced and trafficked in multiple regions in the adult brain, where they influence neuronal activity, function and survival throughout life. The diverse presence and activity of BDNF suggests a potential role for this molecule in the pathogenesis and treatment of both neurological and psychiatric disorders. This article reviews the current understanding and future directions in BDNF-related research in the central nervous system, with an emphasis on the possible therapeutic application of BDNF in modifying fundamental processes underlying neural disease.


Neuron | 2012

JNK3 Perpetuates Metabolic Stress Induced by Aβ Peptides

Sung Ok Yoon; Dong Ju Park; Jae Cheon Ryu; Hatice Gulcin Ozer; Chhavy Tep; Yong Jae Shin; Tae Hee Lim; Lucia Pastorino; Ajaya J. Kunwar; James C. Walton; Alan H. Nagahara; Kun Ping Lu; Randy J. Nelson; Mark H. Tuszynski; Kun Huang

Although Aβ peptides are causative agents in Alzheimers disease (AD), the underlying mechanisms are still elusive. We report that Aβ42 induces a translational block by activating AMPK, thereby inhibiting the mTOR pathway. This translational block leads to widespread ER stress, which activates JNK3. JNK3 in turn phosphorylates APP at T668, thereby facilitating its endocytosis and subsequent processing. In support, pharmacologically blocking translation results in a significant increase in Aβ42 in a JNK3-dependent manner. Thus, JNK3 activation, which is increased in human AD cases and a familial AD (FAD) mouse model, is integral to perpetuating Aβ42 production. Concomitantly, deletion of JNK3 from FAD mice results in a dramatic reduction in Aβ42 levels and overall plaque loads and increased neuronal number and improved cognition. This reveals AD as a metabolic disease that is under tight control by JNK3.


JAMA Neurology | 2015

Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease

Mark H. Tuszynski; Jennifer Yang; David Barba; Hoi-Sang U; Roy A. E. Bakay; Mary Pay; Eliezer Masliah; James M. Conner; Peter Kobalka; Subhojit Roy; Alan H. Nagahara

IMPORTANCE Alzheimer disease (AD) is the most common neurodegenerative disorder and lacks effective disease-modifying therapies. In 2001, we initiated a clinical trial of nerve growth factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in patients with AD. We present postmortem findings in 10 patients with survival times ranging from 1 to 10 years after treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS Patients in this anatomicopathological study were enrolled in clinical trials from March 2001 to October 2012 at the University of California, San Diego, Medical Center in La Jolla. Ten patients with early AD underwent NGF gene therapy using ex vivo or in vivo gene transfer. The brains of all 8 patients in the first phase 1 ex vivo trial and of 2 patients in a subsequent phase 1 in vivo trial were examined. MAIN OUTCOMES AND MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In 2 patients, NGF protein levels were measured by enzyme-linked immunosorbent assay. RESULTS Among 10 patients, degenerating neurons in the AD brain responded to NGF. All patients exhibited a trophic response to NGF in the form of axonal sprouting toward the NGF source. Comparing treated and nontreated sides of the brain in 3 patients who underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P < .05). Activation of cellular signaling and functional markers was present in 2 patients who underwent adeno-associated viral vectors (serotype 2)-mediated NGF gene transfer. Neurons exhibiting tau pathology and neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes, with resultant activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that neurons of the degenerating brain retain the ability to respond to growth factors with axonal sprouting, cell hypertrophy, and activation of functional markers. Sprouting induced by NGF persists for 10 years after gene transfer. Growth factor therapy appears safe over extended periods and merits continued testing as a means of treating neurodegenerative disorders.


The Journal of Neuroscience | 2013

Early BDNF Treatment Ameliorates Cell Loss in the Entorhinal Cortex of APP Transgenic Mice

Alan H. Nagahara; Michael Mateling; Imre Kovacs; Ling Wang; Simone Eggert; Edward Rockenstein; Edward H. Koo; Eliezer Masliah; Mark H. Tuszynski

Brain-derived neurotrophic factor (BDNF) improves molecular, cellular, and behavioral measures of neural dysfunction in genetic models of Alzheimers disease (Blurton-Jones et al., 2009; Nagahara et al., 2009). However, BDNF treatment after disease onset has not been reported to improve neuronal survival in these models. We now report prevention of neuronal loss with early life BDNF treatment in mutant mice expressing two amyloid precursor protein (APP) mutations associated with early-onset familial Alzheimers disease. APP transgenic mice underwent lentiviral BDNF gene delivery into the entorhinal cortices at age 2 months and were examined 5 months later. BDNF-treated mice exhibited significant improvements in hippocampal-dependent contextual fear conditioning compared with control-treated APP mice (p < 0.05). Stereological analysis of entorhinal cortical cell number demonstrated ∼20% reductions in neuronal number in layers II-VI of the entorhinal cortex in untreated APP mutant mice compared with wild-type mice (p < 0.0001), and significant amelioration of cell loss by BDNF (p < 0.001). Moreover, BDNF gene delivery improved synaptophysin immunoreactivity in the entorhinal cortex and, through anterograde BDNF transport, in the hippocampus (p < 0.01). Notably, BDNF did not affect amyloid plaque numbers, indicating that direct amyloid reduction is not necessary to achieve significant neuroprotective benefits in mutant amyloid models of Alzheimers disease.


Neurobiology of Aging | 2010

Age-related cognitive deficits in rhesus monkeys mirror human deficits on an automated test battery

Alan H. Nagahara; Tim Bernot; Mark H. Tuszynski

Aged non-human primates are a valuable model for gaining insight into mechanisms underlying neural decline with aging and during the course of neurodegenerative disorders. Behavioral studies are a valuable component of aged primate models, but are difficult to perform, time consuming, and often of uncertain relevance to human cognitive measures. We now report findings from an automated cognitive test battery in aged primates using equipment that is identical, and tasks that are similar, to those employed in human aging and Alzheimers disease (AD) studies. Young (7.1+/-0.8 years) and aged (23.0+/-0.5 years) rhesus monkeys underwent testing on a modified version of the Cambridge Automated Neuropsychological Test Battery (CANTAB), examining cognitive performance on separate tasks that sample features of visuospatial learning, spatial working memory, discrimination learning, and skilled motor performance. We find selective cognitive impairments among aged subjects in visuospatial learning and spatial working memory, but not in delayed recall of previously learned discriminations. Aged monkeys also exhibit slower speed in skilled motor function. Thus, aged monkeys behaviorally characterized on a battery of automated tests reveal patterns of age-related cognitive impairment that mirror in quality and severity those of aged humans, and differ fundamentally from more severe patterns of deficits observed in AD.


Experimental Neurology | 2009

Long-Term Reversal of Cholinergic Neuronal Decline in Aged Non- Human Primates by Lentiviral NGF Gene Delivery

Alan H. Nagahara; Tim Bernot; Rod Moseanko; Laurie L. Brignolo; Armin Blesch; James M. Conner; Anthony Ramirez; Mehdi Gasmi; Mark H. Tuszynski

Spontaneous atrophy of basal forebrain cholinergic neurons occurs with aging in the non-human primate brain. Short-term reversal of this atrophy has been reported following ex vivo nerve growth factor (NGF) gene delivery, but long-term effects of in vivo NGF gene delivery in the aged primate brain have not to date been examined. We tested the hypothesis that long-term lentiviral NGF intraparenchymal gene delivery would reverse age-related cholinergic decline, without induction of adverse effects previously observed following sustained intracerebroventricular growth factor protein exposure. Three aged rhesus monkeys underwent intraparenchymal lentiviral NGF gene delivery to the cholinergic basal forebrain. 1 year later, cholinergic neuronal numbers were quantified stereologically and compared to findings in four controls, non-treated aged monkeys and four young adult monkeys. Safety was assessed on several variables related to growth factor exposure. We now report that lentiviral gene delivery of NGF to the aged primate basal forebrain sustains gene expression for at least 1 year, and significantly restores cholinergic neuronal markers to levels of young monkeys. Aging resulted in a significant 17% reduction (p<0.05) in the number of neurons labeled for the cholinergic marker p75 among basal forebrain neurons. Lentiviral NGF gene delivery induced significant (p<0.05) and nearly complete recovery of p75-labeled neuronal numbers in aged subjects to levels observed in young monkeys. Similarly, the size of cholinergic neurons in aged monkeys was significantly reduced by 16% compared to young subjects (p<0.05), and lentiviral NGF delivery to aged subjects induced complete recovery of neuronal size. Intraparenchymal NGF gene delivery over a one-year period did not result in systemic leakage of NGF, activation of inflammatory markers in the brain, pain, weight loss, Schwann cell migration, or formation of anti-NGF antibodies. These findings indicate that extended trophic support to neurons in the non-human primate brain reverses age-related neuronal atrophy. These findings also support the safety and feasibility of lentiviral NGF gene transfer for potential testing in human clinical trials to protect degenerating cholinergic neurons in Alzheimers disease.


Brain Research | 2007

Corticotropin-releasing hormone heterogeneous nuclear RNA (hnRNA) and immunoreactivity are induced in extrahypothalamic brain sites by kainic-acid-induced seizures and are modulated by estrogen

Chad D. Foradori; Trent D. Lund; Alan H. Nagahara; James Irvin Koenig; Robert J. Handa

Corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are pivotal mediators of the hormonal response to stressors and are found within neurons of the paraventricular nucleus of the hypothalamus (PVN) and several extrahypothalamic sites where expression is activity-dependent. Previous work has shown increased CRH immunoreactivity in extrahypothalamic sites after kainic-acid (KA)-induced seizures in male rats. This study examined the induction of CRH heterogeneous nuclear RNA (hnRNA), AVP hnRNA and c-fos as a measure of gene transcription and cell activation following kainic-acid (KA)-induced seizures. KA or saline was administered to intact male rats, ovariectomized (OVX) females and OVX females treated with 17beta-estradiol (E2). Animals were sacrificed 0, 15, 60 or 120 min following KA treatment. In the PVN, CRH hnRNA levels were increased by KA treatment at 15, 60, and 120 min. AVP hnRNA and c-fos mRNA in the PVN were also significantly elevated above controls at all time points. Elevations in CRH hnRNA were also identified in hippocampus, the lateral bed nucleus of the stria terminalis (BNST) and globus pallidus at 60 and 120 min following KA and in the piriform cortex, and central nucleus of the amygdala at 120 min after KA. CRH hnRNA levels at 120 min in the PVN, amygdala, cingulate cortex, hippocampus (CA1), piriform cortex, and BNST were lower in OVX+E2 females compared to females without E2. To determine if the increases in CRH hnRNA translated to increased CRH peptide, immunocytochemistry was performed. CRH immunoreactivity was increased in the amygdala, BNST, cingulate cortex, PVN and globus pallidus within 3 h after KA treatment and in the piriform cortex and hippocampus by 6 h after KA. These results suggest a time-dependent activation of the CRH system following activation of kainate receptors, which may result in long-term changes in the expression of extrahypothalamic CRH.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Rehabilitation drives enhancement of neuronal structure in functionally relevant neuronal subsets

Ling Wang; James M. Conner; Alan H. Nagahara; Mark H. Tuszynski

Significance Rehabilitation is often prescribed after brain injury, but the basis for how training can influence brain plasticity and recovery is unclear. In this study, we show that intense rehabilitation training after focal brain injury drives significant structural changes in brain cells located adjacent to the injury. Importantly, a key brain modulatory system, the basal forebrain cholinergic system, is required for enabling rehabilitation to impact brain structure. Damage to the cholinergic system, which can occur naturally during aging, completely blocks brain plasticity mediated by rehabilitation and significantly attenuates functional recovery. These results provide new insights into how rehabilitation may promote recovery and suggest that brain cholinergic systems may be a possible therapeutic target for influencing recovery. We determined whether rehabilitation after cortical injury also drives dynamic dendritic and spine changes in functionally distinct subsets of neurons, resulting in functional recovery. Moreover, given known requirements for cholinergic systems in mediating complex forms of cortical plasticity, including skilled motor learning, we hypothesized that cholinergic systems are essential mediators of neuronal structural and functional plasticity associated with motor rehabilitation. Adult rats learned a skilled forelimb grasping task and then, underwent destructive lesions of the caudal forelimb region of the motor cortex, resulting in nearly complete loss of grasping ability. Subsequent intensive rehabilitation significantly enhanced both dendritic architecture and spine number in the adjoining rostral forelimb area compared with that in the lesioned animals that were not rehabilitated. Cholinergic ablation markedly attenuated rehabilitation-induced recovery in both neuronal structure and motor function. Thus, rehabilitation focused on an affected limb robustly drives structural compensation in perilesion cortex, enabling functional recovery.


Archive | 2016

NGF and BDNF Gene Therapy for Alzheimer’s Disease

Mark H. Tuszynski; Alan H. Nagahara

Nervous system growth factors have extensive effects on neuronal function and survival. Nerve Growth Factor (NGF) prevents the death and stimulates the function of basal forebrain cholinergic neurons in correlational models of Alzheimer’s disease (AD), leading to its translation to Phase 1 and 2 human clinical trials. Separately, Brain-Derived Neurotrophic Factor (BDNF) influences the survival and function of entorhinal cortical and hippocampal neurons in several animal models of AD, including transgenic mutant APP-expressing mice, aged and lesioned rats, and aged and lesioned primates. These beneficial effects occur independent of detectable alterations in beta amyloid load. We are currently examining the extended safety and tolerability of BDNF gene delivery to the entorhinal cortex in animal studies, leading to specific targeting of short-term memory loss in upcoming human AD trials. Collectively, a large body of research suggests that growth factor therapy represents an alternative to amyloid-modifying drugs for preventing neuronal degeneration and stimulating neuronal function in Alzheimer’s disease, with the potential to reduce disease progression.

Collaboration


Dive into the Alan H. Nagahara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Imre Kovacs

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward H. Koo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bayard Wilson

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge