Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan O. Perantoni is active.

Publication


Featured researches published by Alan O. Perantoni.


Development | 2005

Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development

Alan O. Perantoni; Olga Timofeeva; Florence Naillat; Charmaine Richman; Sangeeta Pajni-Underwood; Catherine Wilson; Seppo Vainio; Lee F. Dove; Mark Lewandoski

To bypass the essential gastrulation function of Fgf8 and study its role in lineages of the primitive streak, we have used a new mouse line, T-Cre, to generate mouse embryos with pan-mesodermal loss of Fgf8 expression. Surprisingly, despite previous models in which Fgf8 has been assigned a pivotal role in segmentation/somite differentiation, Fgf8 is not required for these processes. However, mutant neonates display severe renal hypoplasia with deficient nephron formation. In mutant kidneys, aberrant cell death occurs within the metanephric mesenchyme (MM), particularly in the cortical nephrogenic zone, which provides the progenitors for recurring rounds of nephron formation. Prior to mutant morphological changes, Wnt4 and Lim1 expression, which is essential for nephrogenesis, is absent in MM. Furthermore, comparative analysis of Wnt4-null homozygotes reveals concomitant downregulation of Lim1 and diminished tubule formation. Our data support a model whereby FGF8 and WNT4 function in concert to induce the expression of Lim1 for MM survival and tubulogenesis.


Nature Cell Biology | 2013

Stromal–epithelial crosstalk regulates kidney progenitor cell differentiation

Amrita Das; Shunsuke Tanigawa; Courtney M. Karner; Mei Xin; Lawrence Lum; Chuo Chen; Eric N. Olson; Alan O. Perantoni; Thomas J. Carroll

Present models suggest that the fate of the kidney epithelial progenitors is solely regulated by signals from the adjacent ureteric bud. The bud provides signals that regulate the survival, renewal and differentiation of these cells. Recent data suggest that Wnt9b, a ureteric-bud-derived factor, is sufficient for both progenitor cell renewal and differentiation. How the same molecule induces two seemingly contradictory processes is unknown. Here, we show that signals from the stromal fibroblasts cooperate with Wnt9b to promote differentiation of the progenitors. The atypical cadherin Fat4 encodes at least part of this stromal signal. Our data support a model whereby proper kidney size and function is regulated by balancing opposing signals from the ureteric bud and stroma to promote renewal and differentiation of the nephron progenitors.


Mechanisms of Development | 2001

Secreted Frizzled-related proteins can regulate metanephric development.

Kiyoshi Yoshino; Jeffrey S. Rubin; Kathleen G. Higinbotham; Aykut Üren; Vasiliki Anest; Sergei Y. Plisov; Alan O. Perantoni

Wnt-4 signaling plays a critical role in kidney development and is associated with the epithelial conversion of the metanephric mesenchyme. Furthermore, secreted Frizzled-related proteins (sFRPs) that can bind Wnts are normally expressed in the developing metanephros, and function in other systems as modulators of Wnt signaling. sfrp-1 is distributed throughout the medullary and cortical stroma in the metanephros, but is absent from condensed mesenchyme and primitive tubular epithelia of the developing nephron where wnt-4 is highly expressed. In contrast, sfrp-2 is expressed in primitive tubules. To determine their role in kidney development, recombinant sFRP-1, sFRP-2 or combinations of both were applied to cultures of 13-dpc rat metanephroi. Both tubule formation and bud branching were markedly inhibited by sFRP-1, but concurrent sFRP-2 treatment restored some tubular differentiation and bud branching. sFRP-2 itself showed no effect on cultures of metanephroi. In cultures of isolated, induced rat metanephric mesenchymes, sFRP-1 blocked events associated with epithelial conversion (tubulogenesis and expression of lim-1, sfrp-2 and E-cadherin); however, it had no demonstrable effect on early events (compaction of mesenchyme and expression of wt1). As shown herein, sFRP-1 binds Wnt-4 with considerable avidity and inhibits the DNA-binding activity of TCF, an effector of Wnt signaling, while sFRP-2 had no effect on TCF activation. These observations suggest that sFRP-1 and sFRP-2 compete locally to regulate Wnt signaling during renal organogenesis. The antagonistic effect of sFRP-1 may be important either in preventing inappropriate development within differentiated areas of the medulla or in maintaining a population of cortical blastemal cells to facilitate further renal expansion. On the other hand, sFRP-2 might promote tubule formation by permitting Wnt-4 signaling in the presence of sFRP-1.


Cancer Science | 2009

Targeting the ubiquitin‐proteasome system for cancer therapy

Yili Yang; Jirouta Kitagaki; Honghe Wang; De-Xing Hou; Alan O. Perantoni

The ubiquitin‐proteasome system plays a critical role in controlling the level, activity and location of various cellular proteins. Significant progress has been made in investigating the molecular mechanisms of ubiquitination, particularly in understanding the structure of the ubiquitination machinery and identifying ubiquitin protein ligases, the primary specificity‐determining enzymes. Therefore, it is now possible to target specific molecules involved in ubiquitination and proteasomal degradation to regulate many cellular processes such as signal transduction, proliferation and apoptosis. In particular, alterations in ubiquitination are observed in most, if not all, cancer cells. This is manifested by destabilization of tumor suppressors, such as p53, and overexpression of oncogenes such as c‐Myc and c‐Jun. In addition to the development and clinical validation of proteasome inhibitor, bortezomib, in myeloma therapy, recent studies have demonstrated that it is possible to develop inhibitors for specific ubiquitination and deubiquitination enzymes. With the help of structural studies, rational design and chemical synthesis, it is conceivable that we will be able to use ‘druggable’ inhibitors of the ubiquitin system to evaluate their effects in animal tumor models in the not‐so‐distant future. (Cancer Sci 2009; 100: 24–28)


Developmental Biology | 2011

Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism

Shunsuke Tanigawa; Honghe Wang; Yili Yang; Nirmala Sharma; Nadya I. Tarasova; Rieko Ajima; Terry P. Yamaguchi; Luis G. Rodriguez; Alan O. Perantoni

Wnt4 and β-catenin are both required for nephrogenesis, but studies using TCF-reporter mice suggest that canonical Wnt signaling is not activated in metanephric mesenchyme (MM) during its conversion to the epithelia of the nephron. To better define the role of Wnt signaling, we treated rat metanephric mesenchymal progenitors directly with recombinant Wnt proteins. These studies revealed that Wnt4 protein, which is required for nephron formation, induces tubule formation and differentiation markers Lim1 and E-cadherin in MM cells, but does not activate a TCF reporter or up regulate expression of canonical Wnt target gene Axin-2 and has little effect on the stabilization of β-catenin or phosphorylation of disheveled-2. Furthermore, Wnt4 causes membrane localization of ZO-1 and occludin in tight junctions. To directly examine the role of β-catenin/TCF-dependent transcription, we developed synthetic cell-permeable analogs of β-catenins helix C, which is required for transcriptional activation, in efforts to specifically inhibit canonical Wnt signaling. One inhibitor blocked TCF-dependent transcription and induced degradation of β-catenin but did not affect tubule formation and stimulated the expression of Lim1 and E-cadherin. Since a canonical mechanism appears not to be operative in tubule formation, we assessed the involvement of the non-canonical Ca(2+)-dependent pathway. Treatment of MM cells with Wnt4 induced an influx of Ca(2+) and caused phosphorylation of CaMKII. Moreover, Ionomycin, a Ca(2+)-dependent pathway activator, stimulated tubule formation. These results demonstrate that the canonical Wnt pathway is not responsible for mesenchymal-epithelial transition (MET) in nephron formation and suggest that the non-canonical calcium/Wnt pathway mediates Wnt4-induced tubulogenesis in the kidney.


Journal of Biological Chemistry | 2010

A Novel Wilms Tumor 1 (WT1) Target Gene Negatively Regulates the WNT Signaling Pathway

Myoung Shin Kim; Seung Kew Yoon; Frank Bollig; Jirouta Kitagaki; Wonhee Hur; Nathan J. Whye; Yun-Ping Wu; Miguel Rivera; Jik Young Park; Ho-Shik Kim; Karim Malik; Daphne W. Bell; Christoph Englert; Alan O. Perantoni; Sean Bong Lee

Mammalian kidney development requires the functions of the Wilms tumor gene WT1 and the WNT/β-catenin signaling pathway. Recent studies have shown that WT1 negatively regulates WNT/β-catenin signaling, but the molecular mechanisms by which WT1 inhibits WNT/β-catenin signaling are not completely understood. In this study, we identified a gene, CXXC5, which we have renamed WID (WT1-induced Inhibitor of Dishevelled), as a novel WT1 transcriptional target that negatively regulates WNT/β-catenin signaling. WT1 activates WID transcription through the upstream enhancer region. In the developing kidney, Wid and Wt1 are coexpressed in podocytes of maturing nephrons. Structure-function analysis demonstrated that WID interacts with Dishevelled via its C-terminal CXXC zinc finger and Dishevelled binding domains and potently inhibits WNT/β-catenin signaling in vitro and in vivo. WID is evolutionarily conserved, and ablation of wid in zebrafish embryos with antisense morpholino oligonucleotides perturbs embryonic kidney development. Taken together, our results demonstrate that the WT1 negatively regulates WNT/β-catenin pathway via its target gene WID and further suggest a role for WID in nephrogenesis.


Developmental Dynamics | 2007

Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis.

Scott Boyle; Toshi Shioda; Alan O. Perantoni; Mark P. de Caestecker

Early kidney development in mammals is characterized by reciprocal tissue interaction between the ureteric bud and the metanephric mesenchyme. The coordinated response to this interaction is regulated largely at the transcriptional level. Here, we investigate the expression and function of Cited1, a transcriptional cofactor that we have previously implicated in kidney development. We show that Cited1 is expressed in the metanephric mesenchyme after invasion of the ureteric bud and that its expression is limited to the cap mesenchyme, those cells that aggregate most tightly around the tip of the ureteric bud and give rise to nephronic epithelium of the adult kidney. Cited1 is down‐regulated during the initial stages of epithelial conversion and is not expressed past this progenitor stage. Despite its unique expression pattern, deletion of Cited1 does not disrupt kidney development. We hypothesized that this finding was due to functional redundancy with other members of this gene family. The expression pattern of Cited2 overlaps that of Cited1, but its deletion, either alone or in combination with Cited1, does not disrupt epithelial differentiation of the metanephric mesenchyme. From these studies, we conclude that Cited1 and 2 are dynamically expressed during kidney development, but are not required for nephrogenesis. Developmental Dynamics 236:2321–2330, 2007.


Journal of Immunology | 2004

Cutting edge: Bone morphogenetic protein antagonists Drm/Gremlin and Dan interact with Slits and act as negative regulators of monocyte chemotaxis

Bo Chen; Donald G. Blair; Sergei Y. Plisov; Gennady Vasiliev; Alan O. Perantoni; Qian Chen; Meropi Athanasiou; Jane Y. Wu; Joost J. Oppenheim; De Yang

Drm/Gremlin and Dan, two homologous secreted antagonists of bone morphogenic proteins, have been shown to regulate early development, tumorigenesis, and renal pathophysiology. In this study, we report that Drm and Dan physically and functionally interact with Slit1 and Slit2 proteins. Drm binding to Slits depends on its glycosylation and is not interfered with by bone morphogenic proteins. Importantly, Drm and Dan function as inhibitors for monocyte migration induced by stromal cell-derived factor 1α (SDF-1α) or fMLP. The inhibition of SDF-1α-induced monocyte chemotaxis by Dan is not due to blocking the binding of SDF-1α to its receptor. Thus, the results identify that Drm and Dan can interact with Slit proteins and act as inhibitors of monocyte chemotaxis, demonstrating a previously unidentified biological role for these proteins.


Journal of The American Society of Nephrology | 2005

Cited1 Is a Bifunctional Transcriptional Cofactor That Regulates Early Nephronic Patterning

Sergey Plisov; Michael Tsang; Genbin Shi; Scott Boyle; Kiyoshi Yoshino; Sally L. Dunwoodie; Igor B. Dawid; Toshi Shioda; Alan O. Perantoni; Mark P. de Caestecker

In a screen to identify factors that regulate the conversion of mesenchyme to epithelium during the early stages of nephrogenesis, it was found that the Smad4-interacting transcriptional cofactor, Cited1, is expressed in the condensed cap mesenchyme surrounding the tip of the ureteric bud (UB), is downregulated after differentiation into epithelia, and has the capacity to block UB branching and epithelial morphogenesis in cultured metanephroi. Cited1 represses Wnt/beta-catenin but activates Smad4-dependent transcription involved in TGF-beta and Bmp signaling. By modifying these pathways, Cited1 may coordinate cellular differentiation and survival signals that regulate nephronic patterning in the metanephros.


Genesis | 2000

Mesenchymal-epithelial transition in the developing metanephric kidney: gene expression study by differential display.

Sergei Y. Plisov; Sergey V. Ivanov; Kiyoshi Yoshino; Lee F. Dove; Tatiana M. Plisova; Kathleen G. Higinbotham; Irina Karavanova; Michael I. Lerman; Alan O. Perantoni

Summary: The developing metanephric kidney is a convenient model to study molecular events associated with epithelial cell differentiation. To determine the genes involved in the defining event of this process, namely, the conversion of metanephric mesenchyme to the epithelium of the nephron, we applied differential display (DD) techniques. Explants of rat metanephric mesenchymes were induced to condense ex vivo with fibroblast growth factor 2 (FGF2) or to form tubules with FGF2 and conditioned medium (CM) from a cell line (RUB1) of ureteric bud, the renal inductive tissue. Three time points (6, 24, and 72 h) were chosen to track the dynamics of gene expression during morphogenesis. Seventy‐two up‐ or down‐regulated mRNAs were identified, including 36 novel sequences and those of cell cycle regulatory proteins (TGF‐β2, Cyclin D1, p57Kip2), transcription factors (β‐catenin, Sox11, DP1), signaling proteins (SH3‐domain binding protein, G‐protein‐coupled receptor, Ser‐Thr protein kinase), cell adhesion molecules (syndecan‐4, integrin‐β1), and also gene33, H19, SM20, IGFBP5, MAMA receptor, lectin, keratin, β‐tubulin, calreticulin, GRP78, ERp72, MnSoD, thioredoxin, and others. Some have previously been associated with kidney development and serve as good controls for expected changes, while most have not been linked with kidney epithelial cell differentiation. Using thin sections of embryonic kidney and labeled antisense RNA probes, we applied RNA hybridization to confirm the results of DD and related the expression of these genes to specific cell lineages of the developing kidney. These results provide a window into the events that mediate this critical differentiation process and suggest that a limited number of interrelated events direct the epithelial conversion of metanephric mesenchyme. genesis 27:22–31, 2000. Published 2000 Wiley‐Liss, Inc.

Collaboration


Dive into the Alan O. Perantoni's collaboration.

Top Co-Authors

Avatar

Jerry M. Rice

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nirmala Sharma

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark P. de Caestecker

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nadya I. Tarasova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold N. Lovvorn

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Honghe Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bhalchandra A. Diwan

Business International Corporation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge