Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan P. Graves is active.

Publication


Featured researches published by Alan P. Graves.


Nature | 2012

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations

Michael T. McCabe; Heidi M. Ott; Gopinath Ganji; Susan Korenchuk; Christine Thompson; Glenn S. Van Aller; Yan Liu; Alan P. Graves; Anthony Della Pietra; Elsie Diaz; Louis V. LaFrance; Mark Mellinger; Celine Duquenne; Xinrong Tian; Ryan G. Kruger; Charles F. McHugh; Martin Brandt; William Henry Miller; Dashyant Dhanak; Sharad K. Verma; Peter J. Tummino; Caretha L. Creasy

In eukaryotes, post-translational modification of histones is critical for regulation of chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumour types. Additionally, somatic heterozygous mutations of Y641 and A677 residues within the catalytic SET domain of EZH2 occur in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. The Y641 residue is the most frequently mutated residue, with up to 22% of germinal centre B-cell DLBCL and follicular lymphoma harbouring mutations at this site. These lymphomas have increased H3K27 tri-methylation (H3K27me3) owing to altered substrate preferences of the mutant enzymes. However, it is unknown whether specific, direct inhibition of EZH2 methyltransferase activity will be effective in treating EZH2 mutant lymphomas. Here we demonstrate that GSK126, a potent, highly selective, S-adenosyl-methionine-competitive, small-molecule inhibitor of EZH2 methyltransferase activity, decreases global H3K27me3 levels and reactivates silenced PRC2 target genes. GSK126 effectively inhibits the proliferation of EZH2 mutant DLBCL cell lines and markedly inhibits the growth of EZH2 mutant DLBCL xenografts in mice. Together, these data demonstrate that pharmacological inhibition of EZH2 activity may provide a promising treatment for EZH2 mutant lymphoma.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27)

Michael T. McCabe; Alan P. Graves; Gopinath Ganji; Elsie Diaz; Wendy S. Halsey; Yong Jiang; Kimberly N. Smitheman; Heidi M. Ott; Melissa B. Pappalardi; Kimberly E. Allen; Stephanie Chen; Anthony Della Pietra; Edward Dul; Ashley M. Hughes; Seth Gilbert; Sara H. Thrall; Peter J. Tummino; Ryan G. Kruger; Martin Brandt; Benjamin J. Schwartz; Caretha L. Creasy

Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 kcat/Km ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 kcat/Km ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 kcat/Km ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2.


ACS Medicinal Chemistry Letters | 2012

Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EZH2.

Sharad K. Verma; Xinrong Tian; Louis Vincent Lafrance; Celine Duquenne; Dominic Suarez; Kenneth A. Newlander; Stuart P. Romeril; Joelle L. Burgess; Seth W. Grant; James Brackley; Alan P. Graves; Daryl Scherzer; Art Shu; Christine Thompson; Heidi M. Ott; Glenn S. Van Aller; Carl A. Machutta; Elsie Diaz; Yong Jiang; Neil W. Johnson; Steven David Knight; Ryan G. Kruger; Michael T. McCabe; Dashyant Dhanak; Peter J. Tummino; Caretha L. Creasy; William H. Miller

The histone H3-lysine 27 (H3K27) methyltransferase EZH2 plays a critical role in regulating gene expression, and its aberrant activity is linked to the onset and progression of cancer. As part of a drug discovery program targeting EZH2, we have identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 (3) and GSK343 (6). These compounds are small molecule chemical tools that would be useful to further explore the biology of EZH2.


Science Translational Medicine | 2013

Inhibition of the Cardiomyocyte-Specific Kinase TNNI3K Limits Oxidative Stress, Injury, and Adverse Remodeling in the Ischemic Heart

Ronald J. Vagnozzi; Gregory J. Gatto; Lara S. Kallander; Nicholas E. Hoffman; Karthik Mallilankaraman; Victoria L. T. Ballard; Brian G. Lawhorn; Patrick Stoy; Joanne Philp; Alan P. Graves; Yoshiro Naito; John J. Lepore; Erhe Gao; Muniswamy Madesh; Thomas Force

Blocking the activity of a cardiomyocyte-specific protein kinase with a small-molecule inhibitor reduces oxidative stress, myocyte death, and adverse remodeling in the ischemic heart. Blocking Cardiac Kinase Prevents Heart Damage Restoring blood flow after a heart attack is essential; yet, rapid reperfusion of blood can cause adverse effects on heart cells (cardiomyocytes) via oxidative damage, calcium overload, and inflammation. To limit these effects, Vagnozzi and colleagues developed an inhibitor that targets a cardiomyocyte-specific kinase called TNNI3K, which may be intimately involved in signaling events after ischemia (blockage of blood flow) and reperfusion. The authors first confirmed that TNNI3K is up-regulated in tissues from patients with heart failure who were undergoing transplant. Mice that overexpressed active TNNI3K had larger infarcts than those with an inactive form of the kinase, as well as worse ischemic injury and cardiomyocyte death. Conversely, deletion of Tnni3k reduced infarct size and prevented cardiomyocyte death in mice. From the human tissues, the kinase appeared to be limited to cardiomyocytes, which lends itself to targeted therapy. Vagnozzi et al. administered two different small-molecule inhibitors during reperfusion to mice with ischemic injury and observed a reduction in left ventricle dysfunction, progressive remodeling, and fibrosis (a hardening of the heart tissue). The authors believe that these functional benefits stem from a concomitant reduction in superoxide production, p38 activation, and infarct size. This inhibition strategy will need to be tested in a large-animal model before translation. If successful, it could find immediate application to patients with chronic ischemic cardiomyopathy, where recurrent ischemia is followed by reperfusion. Percutaneous coronary intervention is first-line therapy for acute coronary syndromes (ACS) but can promote cardiomyocyte death and cardiac dysfunction via reperfusion injury, a phenomenon driven in large part by oxidative stress. Therapies to limit this progression have proven elusive, with no major classes of new agents since the development of anti-platelets/anti-thrombotics. We report that cardiac troponin I–interacting kinase (TNNI3K), a cardiomyocyte-specific kinase, promotes ischemia/reperfusion injury, oxidative stress, and myocyte death. TNNI3K-mediated injury occurs through increased mitochondrial superoxide production and impaired mitochondrial function and is largely dependent on p38 mitogen-activated protein kinase (MAPK) activation. We developed a series of small-molecule TNNI3K inhibitors that reduce mitochondrial-derived superoxide generation, p38 activation, and infarct size when delivered at reperfusion to mimic clinical intervention. TNNI3K inhibition also preserves cardiac function and limits chronic adverse remodeling. Our findings demonstrate that TNNI3K modulates reperfusion injury in the ischemic heart and is a tractable therapeutic target for ACS. Pharmacologic TNNI3K inhibition would be cardiac-selective, preventing potential adverse effects of systemic kinase inhibition.


Molecular Cancer Therapeutics | 2014

A687V EZH2 Is a Driver of Histone H3 Lysine 27 (H3K27) Hypertrimethylation

Heidi M. Ott; Alan P. Graves; Melissa B. Pappalardi; Michael Huddleston; Wendy S. Halsey; Ashley M. Hughes; Arthur Groy; Edward Dul; Yong Jiang; Yuchen Bai; Roland S. Annan; Sharad K. Verma; Steven D. Knight; Ryan G. Kruger; Dashyant Dhanak; Benjamin Schwartz; Peter J. Tummino; Caretha L. Creasy; Michael T. McCabe

The EZH2 methyltransferase silences gene expression through methylation of histone H3 on lysine 27 (H3K27). Recently, EZH2 mutations have been reported at Y641, A677, and A687 in non-Hodgkin lymphoma. Although the Y641F/N/S/H/C and A677G mutations exhibit clearly increased activity with substrates dimethylated at lysine 27 (H3K27me2), the A687V mutant has been shown to prefer a monomethylated lysine 27 (H3K27me1) with little gain of activity toward H3K27me2. Herein, we demonstrate that despite this unique substrate preference, A687V EZH2 still drives increased H3K27me3 when transiently expressed in cells. However, unlike the previously described mutants that dramatically deplete global H3K27me2 levels, A687V EZH2 retains normal levels of H3K27me2. Sequencing of B-cell–derived cancer cell lines identified an acute lymphoblastic leukemia cell line harboring this mutation. Similar to exogenous expression of A687V EZH2, this cell line exhibited elevated H3K27me3 while possessing H3K27me2 levels higher than Y641- or A677-mutant lines. Treatment of A687V EZH2-mutant cells with GSK126, a selective EZH2 inhibitor, was associated with a global decrease in H3K27me3, robust gene activation, caspase activation, and decreased proliferation. Structural modeling of the A687V EZH2 active site suggests that the increased catalytic activity with H3K27me1 may be due to a weakened interaction with an active site water molecule that must be displaced for dimethylation to occur. These findings suggest that A687V EZH2 likely increases global H3K27me3 indirectly through increased catalytic activity with H3K27me1 and cells harboring this mutation are highly dependent on EZH2 activity for their survival. Mol Cancer Ther; 13(12); 3062–73. ©2014 AACR.


Journal of Biomolecular Screening | 2012

Perspectives on the Discovery of Small-Molecule Modulators for Epigenetic Processes

Quinn Lu; Amy M. Quinn; Mehul Patel; Simon F. Semus; Alan P. Graves; Deepak Bandyopadhyay; Andrew J. Pope; Sara H. Thrall

Epigenetic gene regulation is a critical process controlling differentiation and development, the malfunction of which may underpin a variety of diseases. In this article, we review the current landscape of small-molecule epigenetic modulators including drugs on the market, key compounds in clinical trials, and chemical probes being used in epigenetic mechanistic studies. Hit identification strategies for the discovery of small-molecule epigenetic modulators are summarized with respect to writers, erasers, and readers of histone marks. Perspectives are provided on opportunities for new hit discovery approaches, some of which may define the next generation of therapeutic intervention strategies for epigenetic processes.


Bioorganic & Medicinal Chemistry Letters | 2016

GSK114: A selective inhibitor for elucidating the biological role of TNNI3K.

Brian G. Lawhorn; Joanne Philp; Alan P. Graves; Lisa M. Shewchuk; Dennis A. Holt; Gregory J. Gatto; Lara S. Kallander

A series of selective TNNI3K inhibitors were developed by modifying the hinge-binding heterocycle of a previously reported dual TNNI3K/B-Raf inhibitor. The resulting quinazoline-containing compounds exhibit a large preference (up to 250-fold) for binding to TNNI3K versus B-Raf, are useful probes for elucidating the biological pathways associated with TNNI3K, and are leads for discovering novel cardiac medicines. GSK114 emerged as a leading inhibitor, displaying significant bias (40-fold) for TNNI3K over B-Raf, exceptional broad spectrum kinase selectivity, and adequate oral exposure to enable its use in cellular and in vivo studies.


SLAS DISCOVERY: Advancing Life Sciences R&D | 2018

A High-Throughput Dose-Response Cellular Thermal Shift Assay for Rapid Screening of Drug Target Engagement in Living Cells, Exemplified Using SMYD3 and IDO1.

Dean E. McNulty; William G. Bonnette; Hongwei Qi; Liping Wang; Thau Ho; Anna Waszkiewicz; Lorena A. Kallal; Raman P. Nagarajan; Melissa Stern; Amy M. Quinn; Caretha L. Creasy; Dai-Shi Su; Alan P. Graves; Roland S. Annan; Sharon Sweitzer; Marc A. Holbert

A persistent problem in early small-molecule drug discovery is the frequent lack of rank-order correlation between biochemical potencies derived from initial screens using purified proteins and the diminished potency and efficacy observed in subsequent disease-relevant cellular phenotypic assays. The introduction of the cellular thermal shift assay (CETSA) has bridged this gap by enabling assessment of drug target engagement directly in live cells based on ligand-induced changes in protein thermal stability. Initial success in applying CETSA across multiple drug target classes motivated our investigation into replacing the low-throughput, manually intensive Western blot readout with a quantitative, automated higher-throughput assay that would provide sufficient capacity to use CETSA as a primary hit qualification strategy. We introduce a high-throughput dose-response cellular thermal shift assay (HTDR-CETSA), a single-pot homogenous assay adapted for high-density microtiter plate format. The assay features titratable BacMam expression of full-length target proteins fused to the DiscoverX 42 amino acid ePL tag in HeLa suspension cells, facilitating enzyme fragment complementation–based chemiluminescent quantification of ligand-stabilized soluble protein. This simplified format can accommodate determination of full-dose CETSA curves for hundreds of individual compounds/analyst/day in replicates. HTDR-CETSA data generated for substrate site and alternate binding mode inhibitors of the histone-lysine N-methyltransferase SMYD3 in HeLa suspension cells demonstrate excellent correlation with rank-order potencies observed in cellular mechanistic assays and direct translation to target engagement of endogenous Smyd3 in cancer-relevant cell lines. We envision this workflow to be generically applicable to HTDR-CETSA screening spanning a wide variety of soluble intracellular protein target classes.


Cancer Research | 2012

Abstract 1057: Mutation of EZH2 A677 in human B-cell lymphoma promotes hyper-trimethylation of H3K27

Michael T. McCabe; Alan P. Graves; Gopinath Ganji; Heidi M. Ott; Elsie Diaz; Wendy S. Halsey; Yong Jiang; Kimberly N. Smitheman; Melissa B. Pappalardi; Kimberly E. Allen; Stephanie Chen; Anthony Della-Pietra; Edward Dul; Ashley M. Hughes; Sara H. Thrall; Peter J. Tummino; Ryan G. Kruger; Martin Brandt; Benjamin Schwartz; Sharad K. Verma; Caretha L. Creasy

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive post-translational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the Polycomb Repressive Complex 2 (PRC2) and its expression and catalytic activity are dysregulated in cancers. While EZH2 may be over-expressed as a result of multiple mechanisms in tumors, only somatic mutation of the EZH2 Y641 residue has thus far been reported to alter its substrate preference and enhance its catalytic efficiency to generate H3K27me3. Herein, we report mutation of the A677 residue of EZH2 to a glycine (A677G) in a lymphoma cell line with aberrantly elevated H3K27me3 levels. Additional EZH2 sequence analysis in 41 primary lymphoma specimens identified another occurrence of this mutation. Biochemical evaluation of recombinant EZH2 complexes revealed that A677G EZH2 possesses catalytic activity with substrate specificity that is novel and distinct from those of wild-type and Y641 mutants. Whereas wild-type EZH2 displayed a preference for substrates with less methylation (i.e. H3K27me0>me1>me2), the Y641 mutants exhibited greatly decreased activity with H3K27me0 and increased activity with H3K27me2. The A677G EZH2, on the other hand, exhibited nearly equal efficiency for all three substrates. A677G EZH2, but not wild-type EZH2, was shown to be capable of significantly increasing global H3K27me3 when transiently expressed in an EZH2 wild-type cancer cell line. Finally, structural modeling suggests that the mutation results in a larger lysine tunnel capable of accommodating the H3K27me2 substrate while retaining the ability to properly orient H3K27me0 and H3K27me1 with the Y641 residue. In addition, functional and biochemical analyses are performed with reversible SAM-competitive EZH2 inhibitors. Therefore, this mutation appears to contribute to the aberrant epigenetic profile observed in certain lymphomas. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 1057. doi:1538-7445.AM2012-1057


Polycomb Group Proteins | 2017

Activating Mutations of the EZH2 Histone Methyltransferase in Cancer

Ryan G. Kruger; Alan P. Graves; Michael T. McCabe

Abstract The Enhancer of zeste homolog 2 (EZH2) gene encodes a SET domain-containing lysine methyltransferase that is responsible for mediating methylation of histone H3 on lysine 27 (H3K27). This posttranslational modification of histones is associated with gene silencing and is critically important for the dynamic transcriptional regulation of genes during development and differentiation. Importantly, this enzyme is frequently dysregulated in cancer through amplification, overexpression, and somatic mutation. Mutations that occur in a subset of non-Hodgkins B-cell lymphomas tend to occur at residues located in, or near, the substrate binding pocket and result in altered substrate specificity. These mutations consequently induce a gain-of-function phenotype characterized by H3K27 hypermethylation. This chapter will provide an overview of EZH2 biology in the context of human cancers and will review emerging data on the biological and biochemical effects of gain-of-function EZH2 mutations. Lastly, progress toward the discovery and clinical development of small molecule inhibitors of EZH2 will be discussed.

Collaboration


Dive into the Alan P. Graves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge