Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heidi M. Ott is active.

Publication


Featured researches published by Heidi M. Ott.


Nature | 2012

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations

Michael T. McCabe; Heidi M. Ott; Gopinath Ganji; Susan Korenchuk; Christine Thompson; Glenn S. Van Aller; Yan Liu; Alan P. Graves; Anthony Della Pietra; Elsie Diaz; Louis V. LaFrance; Mark Mellinger; Celine Duquenne; Xinrong Tian; Ryan G. Kruger; Charles F. McHugh; Martin Brandt; William Henry Miller; Dashyant Dhanak; Sharad K. Verma; Peter J. Tummino; Caretha L. Creasy

In eukaryotes, post-translational modification of histones is critical for regulation of chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumour types. Additionally, somatic heterozygous mutations of Y641 and A677 residues within the catalytic SET domain of EZH2 occur in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. The Y641 residue is the most frequently mutated residue, with up to 22% of germinal centre B-cell DLBCL and follicular lymphoma harbouring mutations at this site. These lymphomas have increased H3K27 tri-methylation (H3K27me3) owing to altered substrate preferences of the mutant enzymes. However, it is unknown whether specific, direct inhibition of EZH2 methyltransferase activity will be effective in treating EZH2 mutant lymphomas. Here we demonstrate that GSK126, a potent, highly selective, S-adenosyl-methionine-competitive, small-molecule inhibitor of EZH2 methyltransferase activity, decreases global H3K27me3 levels and reactivates silenced PRC2 target genes. GSK126 effectively inhibits the proliferation of EZH2 mutant DLBCL cell lines and markedly inhibits the growth of EZH2 mutant DLBCL xenografts in mice. Together, these data demonstrate that pharmacological inhibition of EZH2 activity may provide a promising treatment for EZH2 mutant lymphoma.


Cancer Cell | 2013

EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation

Wendy Béguelin; Relja Popovic; Matt Teater; Yanwen Jiang; Karen L. Bunting; Monica Rosen; Hao Shen; Shao Ning Yang; Ling Wang; Teresa Ezponda; Eva Martinez-Garcia; Haikuo Zhang; Sharad K. Verma; Michael T. McCabe; Heidi M. Ott; Glenn S. Van Aller; Ryan G. Kruger; Yan Liu; Charles F. McHugh; David W. Scott; Young Rock Chung; Neil L. Kelleher; Rita Shaknovich; Caretha L. Creasy; Randy D. Gascoyne; Kwok-Kin Wong; Leandro Cerchietti; Ross L. Levine; Omar Abdel-Wahab; Jonathan D. Licht

The EZH2 histone methyltransferase is highly expressed in germinal center (GC) B cells and targeted by somatic mutations in B cell lymphomas. Here, we find that EZH2 deletion or pharmacologic inhibition suppresses GC formation and functions. EZH2 represses proliferation checkpoint genes and helps establish bivalent chromatin domains at key regulatory loci to transiently suppress GC B cell differentiation. Somatic mutations reinforce these physiological effects through enhanced silencing of EZH2 targets. Conditional expression of mutant EZH2 in mice induces GC hyperplasia and accelerated lymphomagenesis in cooperation with BCL2. GC B cell (GCB)-type diffuse large B cell lymphomas (DLBCLs) are mostly addicted to EZH2 but not the more differentiated activated B cell (ABC)-type DLBCLs, thus clarifying the therapeutic scope of EZH2 targeting.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27)

Michael T. McCabe; Alan P. Graves; Gopinath Ganji; Elsie Diaz; Wendy S. Halsey; Yong Jiang; Kimberly N. Smitheman; Heidi M. Ott; Melissa B. Pappalardi; Kimberly E. Allen; Stephanie Chen; Anthony Della Pietra; Edward Dul; Ashley M. Hughes; Seth Gilbert; Sara H. Thrall; Peter J. Tummino; Ryan G. Kruger; Martin Brandt; Benjamin J. Schwartz; Caretha L. Creasy

Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 kcat/Km ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 kcat/Km ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 kcat/Km ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2.


ACS Medicinal Chemistry Letters | 2012

Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EZH2.

Sharad K. Verma; Xinrong Tian; Louis Vincent Lafrance; Celine Duquenne; Dominic Suarez; Kenneth A. Newlander; Stuart P. Romeril; Joelle L. Burgess; Seth W. Grant; James Brackley; Alan P. Graves; Daryl Scherzer; Art Shu; Christine Thompson; Heidi M. Ott; Glenn S. Van Aller; Carl A. Machutta; Elsie Diaz; Yong Jiang; Neil W. Johnson; Steven David Knight; Ryan G. Kruger; Michael T. McCabe; Dashyant Dhanak; Peter J. Tummino; Caretha L. Creasy; William H. Miller

The histone H3-lysine 27 (H3K27) methyltransferase EZH2 plays a critical role in regulating gene expression, and its aberrant activity is linked to the onset and progression of cancer. As part of a drug discovery program targeting EZH2, we have identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 (3) and GSK343 (6). These compounds are small molecule chemical tools that would be useful to further explore the biology of EZH2.


Molecular Cancer Therapeutics | 2009

JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia

Carl L. Manthey; Dana L. Johnson; Carl R. Illig; Robert W. Tuman; Zhao Zhou; Judith Baker; Margery A. Chaikin; Robert R. Donatelli; Carol F. Franks; Lee Zeng; Carl Crysler; Yanmin Chen; Edward J. Yurkow; Sanath K. Meegalla; Kenneth J. Wilson; Mark J. Wall; Jinsheng Chen; Shelley K. Ballentine; Heidi M. Ott; Christian Andrew Baumann; Danielle Lawrence; Bruce E. Tomczuk; Christopher J. Molloy

There is increasing evidence that tumor-associated macrophages promote the malignancy of some cancers. Colony-stimulating factor-1 (CSF-1) is expressed by many tumors and is a growth factor for macrophages and mediates osteoclast differentiation. Herein, we report the efficacy of a novel orally active CSF-1 receptor (CSF-1R) kinase inhibitor, JNJ-28312141, in proof of concept studies of solid tumor growth and tumor-induced bone erosion. H460 lung adenocarcinoma cells did not express CSF-1R and were not growth inhibited by JNJ-28312141 in vitro. Nevertheless, daily p.o. administration of JNJ-28312141 caused dose-dependent suppression of H460 tumor growth in nude mice that correlated with marked reductions in F4/80+ tumor-associated macrophages and with increased plasma CSF-1, a possible biomarker of CSF-1R inhibition. Furthermore, the tumor microvasculature was reduced in JNJ-28312141–treated mice, consistent with a role for macrophages in tumor angiogenesis. In separate studies, JNJ-28312141 was compared with zoledronate in a model in which MRMT-1 mammary carcinoma cells inoculated into the tibias of rats led to severe cortical and trabecular bone lesions. Both agents reduced tumor growth and preserved bone. However, JNJ-28312141 reduced the number of tumor-associated osteoclasts superior to zoledronate. JNJ-28312141 exhibited additional activity against FMS-related receptor tyrosine kinase-3 (FLT3). To more fully define the therapeutic potential of this new agent, JNJ-28312141 was evaluated in a FLT3-dependent acute myeloid leukemia tumor xenograft model and caused tumor regression. In summary, this novel CSF-1R/FLT3 inhibitor represents a new agent with potential therapeutic activity in acute myeloid leukemia and in settings where CSF-1–dependent macrophages and osteoclasts contribute to tumor growth and skeletal events. [Mol Cancer Ther 2009;8(11):3151–61]


ACS Chemical Biology | 2014

Long residence time inhibition of EZH2 in activated polycomb repressive complex 2.

Glenn S. Van Aller; Melissa B. Pappalardi; Heidi M. Ott; Elsie Diaz; Martin Brandt; Benjamin J. Schwartz; William H. Miller; Dashyant Dhanak; Michael T. McCabe; Sharad K. Verma; Caretha L. Creasy; Peter J. Tummino; Ryan G. Kruger

EZH2/PRC2 catalyzes transcriptionally repressive methylation at lysine 27 of histone H3 and has been associated with numerous cancer types. Point mutations in EZH2 at Tyr641 and Ala677 identified in non-Hodgkin lymphomas alter substrate specificity and result in increased trimethylation at histone H3K27. Interestingly, EZH2/PRC2 is activated by binding H3K27me3 marks on histones, and this activation is proposed as a mechanism for self-propagation of gene silencing. Recent work has identified GSK126 as a potent, selective, SAM-competitive inhibitor of EZH2 capable of globally decreasing H3K27 trimethylation in cells. Here we show that activation of PRC2 by an H3 peptide trimethylated at K27 is primarily an effect on the rate-limiting step (kcat) with no effect on substrate binding (Km). Additionally, GSK126 is shown to have a significantly longer residence time of inhibition on the activated form of EZH2/PRC2 as compared to unactivated EZH2/PRC2. Overall inhibition constant (Ki*) values for GSK126 were determined to be as low as 93 pM and appear to be driven by slow dissociation of inhibitor from the activated enzyme. The data suggest that activation of EZH2 allows the enzyme to adopt a conformation that possesses greater affinity for GSK126. The long residence time of GSK126 may be beneficial in vivo and may result in durable target inhibition after drug systemic clearance.


Molecular Cancer Therapeutics | 2014

A687V EZH2 Is a Driver of Histone H3 Lysine 27 (H3K27) Hypertrimethylation

Heidi M. Ott; Alan P. Graves; Melissa B. Pappalardi; Michael Huddleston; Wendy S. Halsey; Ashley M. Hughes; Arthur Groy; Edward Dul; Yong Jiang; Yuchen Bai; Roland S. Annan; Sharad K. Verma; Steven D. Knight; Ryan G. Kruger; Dashyant Dhanak; Benjamin Schwartz; Peter J. Tummino; Caretha L. Creasy; Michael T. McCabe

The EZH2 methyltransferase silences gene expression through methylation of histone H3 on lysine 27 (H3K27). Recently, EZH2 mutations have been reported at Y641, A677, and A687 in non-Hodgkin lymphoma. Although the Y641F/N/S/H/C and A677G mutations exhibit clearly increased activity with substrates dimethylated at lysine 27 (H3K27me2), the A687V mutant has been shown to prefer a monomethylated lysine 27 (H3K27me1) with little gain of activity toward H3K27me2. Herein, we demonstrate that despite this unique substrate preference, A687V EZH2 still drives increased H3K27me3 when transiently expressed in cells. However, unlike the previously described mutants that dramatically deplete global H3K27me2 levels, A687V EZH2 retains normal levels of H3K27me2. Sequencing of B-cell–derived cancer cell lines identified an acute lymphoblastic leukemia cell line harboring this mutation. Similar to exogenous expression of A687V EZH2, this cell line exhibited elevated H3K27me3 while possessing H3K27me2 levels higher than Y641- or A677-mutant lines. Treatment of A687V EZH2-mutant cells with GSK126, a selective EZH2 inhibitor, was associated with a global decrease in H3K27me3, robust gene activation, caspase activation, and decreased proliferation. Structural modeling of the A687V EZH2 active site suggests that the increased catalytic activity with H3K27me1 may be due to a weakened interaction with an active site water molecule that must be displaced for dimethylation to occur. These findings suggest that A687V EZH2 likely increases global H3K27me3 indirectly through increased catalytic activity with H3K27me1 and cells harboring this mutation are highly dependent on EZH2 activity for their survival. Mol Cancer Ther; 13(12); 3062–73. ©2014 AACR.


Cancer Research | 2012

Abstract 1057: Mutation of EZH2 A677 in human B-cell lymphoma promotes hyper-trimethylation of H3K27

Michael T. McCabe; Alan P. Graves; Gopinath Ganji; Heidi M. Ott; Elsie Diaz; Wendy S. Halsey; Yong Jiang; Kimberly N. Smitheman; Melissa B. Pappalardi; Kimberly E. Allen; Stephanie Chen; Anthony Della-Pietra; Edward Dul; Ashley M. Hughes; Sara H. Thrall; Peter J. Tummino; Ryan G. Kruger; Martin Brandt; Benjamin Schwartz; Sharad K. Verma; Caretha L. Creasy

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive post-translational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the Polycomb Repressive Complex 2 (PRC2) and its expression and catalytic activity are dysregulated in cancers. While EZH2 may be over-expressed as a result of multiple mechanisms in tumors, only somatic mutation of the EZH2 Y641 residue has thus far been reported to alter its substrate preference and enhance its catalytic efficiency to generate H3K27me3. Herein, we report mutation of the A677 residue of EZH2 to a glycine (A677G) in a lymphoma cell line with aberrantly elevated H3K27me3 levels. Additional EZH2 sequence analysis in 41 primary lymphoma specimens identified another occurrence of this mutation. Biochemical evaluation of recombinant EZH2 complexes revealed that A677G EZH2 possesses catalytic activity with substrate specificity that is novel and distinct from those of wild-type and Y641 mutants. Whereas wild-type EZH2 displayed a preference for substrates with less methylation (i.e. H3K27me0>me1>me2), the Y641 mutants exhibited greatly decreased activity with H3K27me0 and increased activity with H3K27me2. The A677G EZH2, on the other hand, exhibited nearly equal efficiency for all three substrates. A677G EZH2, but not wild-type EZH2, was shown to be capable of significantly increasing global H3K27me3 when transiently expressed in an EZH2 wild-type cancer cell line. Finally, structural modeling suggests that the mutation results in a larger lysine tunnel capable of accommodating the H3K27me2 substrate while retaining the ability to properly orient H3K27me0 and H3K27me1 with the Y641 residue. In addition, functional and biochemical analyses are performed with reversible SAM-competitive EZH2 inhibitors. Therefore, this mutation appears to contribute to the aberrant epigenetic profile observed in certain lymphomas. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 1057. doi:1538-7445.AM2012-1057


Cancer Research | 2015

Abstract 5379: A potent EZH2 inhibitor exhibits long residence time and anti-tumor activity

Heidi M. Ott; Glenn S. Van Aller; Jessica Ward; BaoChau Le; Cynthia M. Rominger; James J. Foley; Susan Korenchuk; Charles F. McHugh; Michael Butticello; Charles W. Blackledge; James Brackley; Joelle L. Burgess; Celine Duquenne; Neil W. Johnson; Jiri Kasparec; Louis V. LaFrance; Mei Li; Kenneth C. McNulty; Kenneth A. Newlander; Stuart P. Romeril; Stanley J. Schmidt; Mark J. Schulz; Dai-Shi Su; Dominic Suarez; Xinrong Tian; Christopher Carpenter; Juan I. Luengo; Ryan G. Kruger; Steven D. Knight; Michael T. McCabe

The EZH2 histone methyltransferase is frequently mutated in diffuse large B-cell lymphoma leading to increased trimethylation of histone H3 lysine 27 (H3K27me3). Drug discovery efforts have previously identified a pyridone-based chemical series of EZH2 inhibitors that potently and selectively inhibit EZH2 catalytic activity. These compounds are capable of globally decreasing H3K27me3 levels, de-repressing EZH2 target genes, and inducing growth inhibition of many lymphoma cell lines both in cell culture and in vivo. Through medicinal chemistry optimization, we have developed EZH2 inhibitors with significantly improved potency in both biochemical and cellular assays. These compounds exhibit a prolonged enzyme residence time that can be further extended in vitro through the addition of an H3K27me3 peptide. Herein, we report the biochemical and cellular activity of these new EZH2 inhibitors. Citation Format: Heidi Ott, Glenn van Aller, Jessica Ward, BaoChau Le, Cynthia Rominger, James Foley, Susan Korenchuk, Charles McHugh, Michael Butticello, Charles Blackledge, James Brackley, Joelle Burgess, Celine Duquenne, Neil Johnson, Jiri Kasparec, Louis LaFrance, Mei Li, Kenneth McNulty, Kenneth Newlander, Stuart Romeril, Stanley Schmidt, Mark Schulz, Dai-Shi Su, Dominic Suarez, Xinrong Tian, Christopher Carpenter, Juan Luengo, Ryan Kruger, Steven Knight, Michael T. McCabe. A potent EZH2 inhibitor exhibits long residence time and anti-tumor activity. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 5379. doi:10.1158/1538-7445.AM2015-5379


Cancer Research | 2014

Abstract 5151: A687V EZH2 is a driver of histone H3 lysine 27 (H3K27) hyper-trimethylation

Heidi M. Ott; Alan P. Graves; Melissa B. Pappalardi; Ryan G. Kruger; Peter J. Tummino; Caretha L. Creasy; Michael T. McCabe

Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA The EZH2 methyltransferase silences gene expression through methylation of histone H3 on lysine 27 (H3K27). Recently, EZH2 mutations have been reported at Y641, A677, and A687 in non-Hodgkins lymphoma. While the Y641F/N/S/H/C and A677G mutations exhibit clearly increased activity with substrates di-methylated at lysine 27 (H3K27me2), the A687V mutant has been shown to prefer a mono-methylated lysine 27 (H3K27me1) with little gain of activity toward H3K27me2. Herein, we demonstrate that despite this unique substrate preference, A687V EZH2 still drives increased H3K27me3 when transiently expressed in cells. However, unlike the previously described mutants which dramatically deplete global H3K27me2 levels, A687V EZH2 retains normal levels of H3K27me2. Sequencing of B-cell derived cancer cell lines identified a cell line harboring this mutation. Similar to exogenous expression of A687V EZH2, this cell line exhibited elevated H3K27me3 while possessing H3K27me2 levels higher than Y641 or A677 mutant lines. Treatment of A687V EZH2 mutant cells with GSK126, a selective EZH2 inhibitor, induced global H3K27me3 demethylation, robust gene activation, caspase activation, and decreased proliferation. These findings suggest that A687V EZH2 likely increases global H3K27me3 indirectly through increased catalytic activity with H3K27me1 and cells harboring this mutation are highly dependent on EZH2 activity for their survival. Citation Format: Heidi Ott, Alan Graves, Melissa Pappalardi, Ryan Kruger, Peter Tummino, Caretha Creasy, Michael T. McCabe. A687V EZH2 is a driver of histone H3 lysine 27 (H3K27) hyper-trimethylation. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 5151. doi:10.1158/1538-7445.AM2014-5151

Collaboration


Dive into the Heidi M. Ott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge