Alan Saul
Discovery Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan Saul.
Cell Death and Disease | 2016
Esraa Shosha; Zhimin Xu; Harumasa Yokota; Alan Saul; Modesto Rojas; R. William Caldwell; Ruth B. Caldwell; S. Priya Narayanan
Retinal ischemia is a major cause of visual impairment and blindness and is involved in various disorders including diabetic retinopathy, glaucoma, optic neuropathies and retinopathy of prematurity. Neurovascular degeneration is a common feature of these pathologies. Our lab has previously reported that the ureahydrolase arginase 2 (A2) is involved in ischemic retinopathies. Here, we are introducing A2 as a therapeutic target to prevent neurovascular injury after retinal ischemia/reperfusion (I/R) insult. Studies were performed with mice lacking both copies of A2 (A2−/−) and wild-type (WT) controls (C57BL6J). I/R insult was conducted on the right eye and the left eye was used as control. Retinas were collected for analysis at different times (3 h–4 week after injury). Neuronal and microvascular degeneration were evaluated using NeuN staining and vascular digests, respectively. Glial activation was evaluated by glial fibrillary acidic protein expression. Necrotic cell death was studied by propidium iodide labeling and western blot for RIP-3. Arginase expression was determined by western blot and quantitative RT-PCR. Retinal function was determined by electroretinography (ERG). A2 mRNA and protein levels were increased in WT I/R. A2 deletion significantly reduced ganglion cell loss and microvascular degeneration and preserved retinal morphology after I/R. Glial activation, reactive oxygen species formation and cell death by necroptosis were significantly reduced by A2 deletion. ERG showed improved positive scotopic threshold response with A2 deletion. This study shows for the first time that neurovascular injury after retinal I/R is mediated through increased expression of A2. Deletion of A2 was found to be beneficial in reducing neurovascular degeneration after I/R.
Advances in Experimental Medicine and Biology | 2017
Jing Wang; Xuezhi Cui; Penny Roon; Alan Saul; Sylvia B. Smith
This review article focuses on studies of Sigma 1 Receptor (Sigma1R) and retina . It provides a brief overview of the earliest pharmacological studies performed in the late 1990s that provided evidence of the presence of Sigma1R in various ocular tissues. It then describes work from a number of labs concerning the location of Sigma1R in several retinal cell types including ganglion, Müller glia , and photoreceptors . The role of Sigma1R ligands in retinal neuroprotection is emphasized. Early studies performed in vitro clearly showed that targeting Sigma1R could attenuate stress-induced retinal cell loss. These studies were followed by in vivo experiments. Data about the usefulness of targeting Sigma1R to prevent ganglion cell loss associated with diabetic retinopathy are reviewed. Mechanisms of Sigma1R-mediated retinal neuroprotection involving Müller cells , especially in modulating oxidative stress are described along with information about the retinal phenotype of mice lacking Sigma1R (Sigma1R -/- mice). The retina develops normally in Sigma1R -/- mice, but after many months there is evidence of apoptosis in the optic nerve head, decreased ganglion cell function and eventual loss of these cells. Additional studies using the Sigma1R -/- mice provide strong evidence that in the retina, Sigma1R plays a key role in modulating cellular stress. Recent work has shown that targeting Sigma1R may extend beyond protection of ganglion cells to include photoreceptor cell degeneration as well.
Investigative Ophthalmology & Visual Science | 2017
Jing Wang; Alan Saul; Xuezhi Cui; Penny Roon; Sylvia B. Smith
Purpose Sigma 1 Receptor (Sig1R) is a novel therapeutic target in neurodegenerative diseases, including retinal disease. Sig1R−/− mice have late-onset retinal degeneration with ganglion cell loss that worsens under stress. Whether Sig1R plays a role in maintaining other retinal neurons is unknown, but was investigated here using rd10 mice, a model of severe photoreceptor degeneration. Methods Wild-type, rd10, and rd10/Sig1R−/− mice were subjected to ERG and spectral-domain optical coherence tomography (SD-OCT) to assess visual function/structure in situ. Retinas imaged microscopically were subjected to morphometric analysis, immunodetection of cones, and analysis of gliosis. Oxidative and endoplasmic reticulum (ER) stress was evaluated at mRNA/protein levels. Results Photopic ERG responses were reduced significantly in rd10/Sig1R−/− versus rd10 mice at P28 (31 ± 6 vs. 56 ± 7 μV), indicating accelerated cone loss when Sig1R was absent. At P28, SD-OCT revealed reduced retinal thickness in rd10/Sig1R−/− mice (60% of WT) versus rd10 (80% of WT). Morphometric analysis disclosed profound photoreceptor nuclei loss in rd10/Sig1R−/− versus rd10 mice. rd10/Sig1R−/− mice had 35% and 60% fewer photoreceptors, respectively, at P28 and P35, than rd10. Peanut agglutinin cone labeling decreased significantly; gliosis increased significantly in rd10/Sig1R−/− versus rd10 mice. At P21, NRF2 levels increased in rd10/Sig1R−/− mice versus rd10 and downstream antioxidants increased indicating oxidative stress. At P28, ER stress genes/proteins, especially XBP1, a potent transcriptional activator of the unfolded protein response and CHOP, a proapoptotic transcription factor, increased significantly in rd10/Sig1R−/− mice versus rd10. Conclusions Photoreceptor cell degeneration accelerates and cone function diminishes much earlier in rd10/Sig1R−/− than rd10 mice emphasizing the importance of Sig1R as a modulator of retinal cell survival.
Molecular Vision | 2012
Yonju Ha; Alan Saul; Amany Tawfik; Eric P. Zorrilla; Vadivel Ganapathy; Sylvia B. Smith
Journal of Neurophysiology | 2005
Alan Saul; Peter L Carras; Allen L. Humphrey
Journal of Neurophysiology | 2007
Yamei Tang; Alan Saul; Moshe Gur; Stephanie Goei; Elsie Wong; Bilgin Ersoy; D. Max Snodderly
Documenta Ophthalmologica | 2017
Alan Saul; Xuezhi Cui; Shanu Markand; Sylvia B. Smith
Investigative Ophthalmology & Visual Science | 2017
S. Priya Narayanan; Alan Saul; Zhimin Xu; Prahalathan Pichavaram
Investigative Ophthalmology & Visual Science | 2016
Jaya P Gnana-Prakasam; Kapil Chaudhary; Wanwisa Promsote; Sylvia B. Smith; Vadivel Ganapathy; Pamela M. Martin; Alan Saul
Circulation | 2011
Wenbo Zhang; Harumasa Yokota; Alan Saul; Hua Liu; Zhimin Xu; Subhadra P. Narayanan; Robert W. Caldwell; Ruth B. Caldwell