Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan T. Asbeck is active.

Publication


Featured researches published by Alan T. Asbeck.


robotics science and systems | 2006

Scaling Hard Vertical Surfaces with Compliant Microspine Arrays

Alan T. Asbeck; Sangbae Kim; Mark R. Cutkosky; William R. Provancher; Michele Lanzetta

A new approach for climbing hard vertical surfaces has been developed that allows a robot to scale concrete, stucco, brick and masonry walls without using suction or adhesives.The approach is inspired by the mechanisms observed in some climbing insects and spiders and involves arrays of microspines that catch on surface asperities. The arrays are located on the toes of the robot and consist of a tuned, multi-link compliant suspension. The fundamental issues of spine allometric scaling versus surface roughness are discussed and the interaction between spines and surfaces is modeled. The toe suspension properties needed to maximize the probability that each spine will find a useable surface irregularity and to distribute climbing loads among many spines are detailed. The principles are demonstrated with a new climbing robot, SpinybotII, that can scale a wide range of flat exterior walls, carry a payload equal to its own weight, and cling without consuming power. The paper also reports how toe parameters scale with robot mass and how spines have also been used successfully on the larger RiSE robot.


international conference on advanced robotics | 2005

SpinybotII: climbing hard walls with compliant microspines

Sangbae Kim; Alan T. Asbeck; Mark R. Cutkosky; William R. Provancher

A new climbing robot has been developed that can scale flat, hard vertical surfaces including concrete, brick, stucco and masonry without using suction or adhesives. The robot can carry a payload equal to its own weight and can cling without consuming power. It employs arrays of miniature spines that catch opportunistically on surface asperities. The approach is inspired by the mechanisms observed in some climbing insects and spiders. This paper covers the analysis and implementation of the approach, focusing on issues of spine/surface interaction and compliant suspension design


The International Journal of Robotics Research | 2011

Landing, perching and taking off from vertical surfaces

Alexis Lussier Desbiens; Alan T. Asbeck; Mark R. Cutkosky

An approach is presented whereby small, unmanned aircraft can land on walls. The approach is demonstrated with a plane that uses an ultrasonic sensor to initiate a pitch-up maneuver as it flies toward a wall. The plane contacts the wall with spines that engage asperities on the surface. A non-linear suspension absorbs the kinetic energy while keeping the spines attached. A planar dynamic model is used to evaluate pitch-up maneuvers and determine suspension parameters that satisfy constraints on the contact forces for a range of flight velocities. Simulations conducted using the model are compared with data obtained using high-speed video and a force plate embedded in a wall.


The International Journal of Robotics Research | 2015

A biologically inspired soft exosuit for walking assistance

Alan T. Asbeck; Kenneth G. Holt; Conor J. Walsh

We present the design and evaluation of a multi-articular soft exosuit that is portable, fully autonomous, and provides assistive torques to the wearer at the ankle and hip during walking. Traditional rigid exoskeletons can be challenging to perfectly align with a wearer’s biological joints and can have large inertias, which can lead to the wearer altering their natural motion patterns. Exosuits, in comparison, use textiles to create tensile forces over the body in parallel with the muscles, enabling them to be light and not restrict the wearer’s kinematics. We describe the biologically inspired design and function of our exosuit, including a simplified model of the suit’s architecture and its interaction with the body. A key feature of the exosuit is that it can generate forces passively due to the body’s motion, similar to the body’s ligaments and tendons. These passively generated forces can be supplemented by actively contracting Bowden cables using geared electric motors, to create peak forces in the suit of up to 200 N. We define the suit–human series stiffness as an important parameter in the design of the exosuit and measure it on several subjects, and we perform human subjects testing to determine the biomechanical and physiological effects of the suit. Results from a five-subject study showed a minimal effect on gait kinematics and an average best-case metabolic reduction of 6.4%, comparing suit worn unpowered versus powered, during loaded walking with 34.6 kg of carried mass including the exosuit and actuators (2.0 kg on both legs, 10.1 kg total).


IEEE Robotics & Automation Magazine | 2014

Stronger, Smarter, Softer: Next-Generation Wearable Robots

Alan T. Asbeck; Ignacio Galiana; Ye Ding; Conor J. Walsh

Exosuits show much promise as a method for augmenting the body with lightweight, portable, and compliant wearable systems. We envision that such systems can be further refined so that they can be sufficiently low profile to fit under a wearers existing clothing. Our focus is on creating an assistive device that provides a fraction of the nominal biological torques and does not provide external load transfer. In early work, we showed that the system can substantially maintain normal biomechanics and positively affect a wearers metabolic rate. Many basic fundamental research and development challenges remain in actuator development, textile innovation, soft sensor development, human-machine interface (control), biomechanics, and physiology, which provides fertile ground for academic research in many disciplines. While we have focused on gait assistance thus far, numerous other applications are possible, including rehabilitation, upper body support, and assistance for other motions. We look forward to a future where wearable robots provide benefits for people across many areas of our society.


international conference on robotics and automation | 2009

Climbing rough vertical surfaces with hierarchical directional adhesion

Alan T. Asbeck; Sanjay Dastoor; Aaron Parness; Laurel Fullerton; Noe Esparza; Daniel Soto; Barrett Heyneman; Mark R. Cutkosky

Prior research in biology and mechanics has shown the importance of hierarchy to the performance of dry adhesive systems on rough surfaces. The gecko utilizes several levels of hierarchy that operate on length scales from millimeters to 100s of nanometers in order to maneuver on smooth and rough vertical surfaces ranging from glass to rock. The geckos hierarchical system serves two main purposes: it permits conformation to the surface for a large effective area of contact, and it distributes the load evenly among contacting elements. We present a new two-tiered directional adhesive system that provides these capabilities for a gecko-inspired climbing robot. The distal features consist of wedge-shaped structures with a base width of 50 µm and a height of approximately 180 µm. The wedges are mounted atop angled cylindrical features, 380 µm in diameter by approximately 1 mm long. Together, the proximal and distal features bend preferentially in the direction of inclination when loaded with a tangential force, achieving a combination of directional adhesion and conformation to rough surfaces. Using this system, a four legged robot that was previously restricted to climbing smooth surfaces is able to climb vertical surfaces such as a wood panels, painted metals, and plastics. On rougher surfaces, the two-tiered system improves adhesion by a factor of five compared to the wedge features alone. The hierarchical system also improved alignment and performance for large patch sizes.


ieee international conference on rehabilitation robotics | 2013

Biologically-inspired soft exosuit

Alan T. Asbeck; Robert Joseph Dyer; Arnar Freyr Larusson; Conor J. Walsh

In this paper, we present the design and evaluation of a novel soft cable-driven exosuit that can apply forces to the body to assist walking. Unlike traditional exoskeletons which contain rigid framing elements, the soft exosuit is worn like clothing, yet can generate moments at the ankle and hip with magnitudes of 18% and 30% of those naturally generated by the body during walking, respectively. Our design uses geared motors to pull on Bowden cables connected to the suit near the ankle. The suit has the advantages over a traditional exoskeleton in that the wearers joints are unconstrained by external rigid structures, and the worn part of the suit is extremely light, which minimizes the suits unintentional interference with the bodys natural biomechanics. However, a soft suit presents challenges related to actuation force transfer and control, since the body is compliant and cannot support large pressures comfortably. We discuss the design of the suit and actuation system, including principles by which soft suits can transfer force to the body effectively and the biological inspiration for the design. For a soft exosuit, an important design parameter is the combined effective stiffness of the suit and its interface to the wearer. We characterize the exosuits effective stiffness, and present preliminary results from it generating assistive torques to a subject during walking. We envision such an exosuit having broad applicability for assisting healthy individuals as well as those with muscle weakness.


IEEE-ASME Transactions on Mechatronics | 2013

The Gecko’s Toe: Scaling Directional Adhesives for Climbing Applications

Elliot Wright Hawkes; Eric V. Eason; Alan T. Asbeck; Mark R. Cutkosky

In this paper, a bioinspired mechanism is presented that allows large patches of directional dry adhesives to attain levels of adhesion previously seen only for small samples in precisely aligned tests. The mechanism uses a rigid tile supported by a compliant material and loaded by an inextensible tendon, and is inspired by the tendon system and the fluid-filled sinus in gecko toes. This mechanism permits the adhesive to make full contact with the surface and have uniform loading despite significant errors in alignment. The single-tile mechanism is demonstrated on the StickybotIII robot and the RiSE climbing robot (gross weight 4 kg). A tiled array of these mechanisms is also presented, with a total adhesive area of 100 cm2. This uses a pressurized sac to equalize adhesive forces among the tiles, and exhibits a comparable adhesive pressure and range of loading angles to those of single tiles. These results suggest that the tiled array can be scaled to larger areas and loads.


international conference on robotics and automation | 2011

A low-cost compliant 7-DOF robotic manipulator

Morgan Quigley; Alan T. Asbeck; Andrew Y. Ng

We present the design of a new low-cost series-elastic robotic arm. The arm is unique in that it achieves reasonable performance for the envisioned tasks (backlash-free, sub-3mm repeatability, moves at 1.5m/s, 2kg payload) but with a significantly lower parts cost than comparable manipulators. The paper explores the design decisions and tradeoffs made in achieving this combination of price and performance. A new, human-safe design is also described: the arm uses stepper motors with a series-elastic transmission for the proximal four degrees of freedom (DOF), and non-series-elastic robotics servos for the distal three DOF. Tradeoffs of the design are discussed, especially in the areas of human safety and control bandwidth. The arm is used to demonstrate pancake cooking (pouring batter, flipping pancakes), using the intrinsic compliance of the arm to aid in interaction with objects.


Science Robotics | 2017

Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit

Brendan Quinlivan; Sangjun Lee; Philippe Malcolm; Denise Martineli Rossi; Martin Grimmer; Christopher Siviy; Nikolaos Karavas; Diana Wagner; Alan T. Asbeck; Ignacio Galiana; Conor J. Walsh

Evaluation of a soft exosuit designed to reduce metabolic requirements during walking. When defining requirements for any wearable robot for walking assistance, it is important to maximize the user’s metabolic benefit resulting from the exosuit assistance while limiting the metabolic penalty of carrying the system’s mass. Thus, the aim of this study was to isolate and characterize the relationship between assistance magnitude and the metabolic cost of walking while also examining changes to the wearer’s underlying gait mechanics. The study was performed with a tethered multiarticular soft exosuit during normal walking, where assistance was directly applied at the ankle joint and indirectly at the hip due to a textile architecture. The exosuit controller was designed such that the delivered torque profile at the ankle joint approximated that of the biological torque during normal walking. Seven participants walked on a treadmill at 1.5 meters per second under one unpowered and four powered conditions, where the peak moment applied at the ankle joint was varied from about 10 to 38% of biological ankle moment (equivalent to an applied force of 18.7 to 75.0% of body weight). Results showed that, with increasing exosuit assistance, net metabolic rate continually decreased within the tested range. When maximum assistance was applied, the metabolic rate of walking was reduced by 22.83 ± 3.17% relative to the powered-off condition (mean ± SEM).

Collaboration


Dive into the Alan T. Asbeck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sangbae Kim

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge