Alan T. Bull
University of Kent
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan T. Bull.
Microbiology and Molecular Biology Reviews | 2000
Alan T. Bull; Alan C. Ward; Michael Goodfellow
SUMMARY Profound changes are occurring in the strategies that biotechnology-based industries are deploying in the search for exploitable biology and to discover new products and develop new or improved processes. The advances that have been made in the past decade in areas such as combinatorial chemistry, combinatorial biosynthesis, metabolic pathway engineering, gene shuffling, and directed evolution of proteins have caused some companies to consider withdrawing from natural product screening. In this review we examine the paradigm shift from traditional biology to bioinformatics that is revolutionizing exploitable biology. We conclude that the reinvigorated means of detecting novel organisms, novel chemical structures, and novel biocatalytic activities will ensure that natural products will continue to be a primary resource for biotechnology. The paradigm shift has been driven by a convergence of complementary technologies, exemplified by DNA sequencing and amplification, genome sequencing and annotation, proteome analysis, and phenotypic inventorying, resulting in the establishment of huge databases that can be mined in order to generate useful knowledge such as the identity and characterization of organisms and the identity of biotechnology targets. Concurrently there have been major advances in understanding the extent of microbial diversity, how uncultured organisms might be grown, and how expression of the metabolic potential of microorganisms can be maximized. The integration of information from complementary databases presents a significant challenge. Such integration should facilitate answers to complex questions involving sequence, biochemical, physiological, taxonomic, and ecological information of the sort posed in exploitable biology. The paradigm shift which we discuss is not absolute in the sense that it will replace established microbiology; rather, it reinforces our view that innovative microbiology is essential for releasing the potential of microbial diversity for biotechnology penetration throughout industry. Various of these issues are considered with reference to deep-sea microbiology and biotechnology.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2005
Hans-Peter Fiedler; Christina Bruntner; Alan T. Bull; Alan C. Ward; Michael Goodfellow; Olivier Potterat; Carsten Puder; Gerhard Mihm
A set of 600 actinomycetes strains which were isolated from marine sediments from various sites in the Pacific and Atlantic Oceans were screened for the production of bioactive secondary metabolites. Marine streptomycete strains were found to be producers of well known chemically diverse antibiotics isolated from terrestrial streptomycetes, as in the case of marine Micromonospora strains. New marine members of the rare genus Verrucosispora seem to be a promising source for novel bioactive secondary metabolites as shown in the case of the abyssomicin producing strain AB-18-032.
Applied and Environmental Microbiology | 2003
James E. M. Stach; Luis A. Maldonado; Douglas G. Masson; Alan C. Ward; Michael Goodfellow; Alan T. Bull
ABSTRACT Bacterial diversity in a deep-sea sediment was investigated by constructing actinobacterium-specific 16S ribosomal DNA (rDNA) clone libraries from sediment sections taken 5 to 12, 15 to 18, and 43 to 46 cm below the sea floor at a depth of 3,814 m. Clones were placed into operational taxonomic unit (OTU) groups with ≥99% 16S rDNA sequence similarity; the cutoff value for an OTU was derived by comparing 16S rRNA homology with DNA-DNA reassociation values for members of the class Actinobacteria. Diversity statistics were used to determine how the level of dominance, species richness, and genetic diversity varied with sediment depth. The reciprocal of Simpsons index (1/D) indicated that the pattern of diversity shifted toward dominance from uniformity with increasing sediment depth. Nonparametric estimation of the species richness in the 5- to 12-, 15- to 18-, and 43- to 46-cm sediment sections revealed a trend of decreasing species number with depth, 1,406, 308, and 212 OTUs, respectively. Application of the LIBSHUFF program indicated that the 5- to 12-cm clone library was composed of OTUs significantly (P = 0.001) different from those of the 15- to 18- and 43- to 46-cm libraries. FST and phylogenetic grouping of taxa (P tests) were both significant (P < 0.00001 and P < 0.001, respectively), indicating that genetic diversity decreased with sediment depth and that each sediment community harbored unique phylogenetic lineages. It was also shown that even nonconservative OTU definitions result in severe underestimation of species richness; unique phylogenetic clades detected in one OTU group suggest that OTUs do not correspond to real ecological groups sensu Palys (T. Palys, L. K. Nakamura, and F. M. Cohan, Int. J. Syst. Bacteriol. 47:1145-1156, 1997). Mechanisms responsible for diversity and their implications are discussed.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2005
Luis A. Maldonado; James E. M. Stach; Wasu Pathom-aree; Alan C. Ward; Alan T. Bull; Michael Goodfellow
Reports describing actinobacteria isolated from marine environments have been dominated by Micromonospora, Rhodococcus and Streptomyces species. Recent culture-independent studies have shown that marine environments contain a high diversity of actinobacterial species that are rarely, if at all, recovered by cultivation-based methods. In this study, it is shown that cultivation-independent methods can be used to guide the application of selective isolation methods. The detection of marine-derived actinobacterial species that have previously only been reported from terrestrial habitats is highlighted. This study provides good evidence that the previously described low diversity of actinobacterial species isolated from marine environments does not reflect an actual low species diversity, and that the use of informed selective isolation procedures can aid in the isolation of members of novel taxa.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2005
Alan T. Bull; James E. M. Stach; Alan C. Ward; Michael Goodfellow
In this paper we evaluate the current state of research on the biology and biotechnology of marine actinobacteria. The topics covered include the abundance, diversity, novelty and biogeographic distribution of marine actinobacteria, ecosystem function, bioprospecting, and a new approach to the exploration of actinobacterial taxonomic space. An agenda for future marine actinobacterial research is suggested based upon consideration of the above issues.
Biotechnology and Bioengineering | 1999
Andrew D. Hooker; Nicola H. Green; Anthony J. Baines; Alan T. Bull; Nigel Jenkins; Philip G. Strange; David C. James
In this study we compare intracellular transport and processing of a recombinant glycoprotein in mammalian and insect cells. Detailed analysis of the N-glycosylation of recombinant human IFN-gamma by matrix-assisted laser-desorption mass spectrometry showed that the protein secreted by Chinese hamster ovary and baculovirus-infected insect Sf9 cells was associated with complex sialylated or truncated tri-mannosyl core glycans, respectively. However, the intracellular proteins were predominantly associated with high-mannose type oligosaccharides (Man-6 to Man-9) in both cases, indicating that endoplasmic reticulum to cis-Golgi transport is a predominant rate-limiting step in both expression systems. In CHO cells, although there was a minor intracellular subpopulation of sialylated IFN-gamma glycoforms identical to the secreted product (therefore associated with late-Golgi compartments or secretory vesicles), no other intermediates were evident. Therefore, anterograde transport processes in the Golgi stack do not limit secretion. In Sf9 insect cells, there was no direct evidence of post-ER glycan-processing events other than core fucosylation and de-mannosylation, both of which were glycosylation site-specific. To investigate the influence of nucleotide-sugar availability on cell-specific glycosylation, the cellular content of nucleotide-sugar substrates in both mammalian and insect cells was quantitatively determined by anion-exchange HPLC. In both host cell types, UDP-hexose and UDP-N-acetylhexosamine were in greater abundance relative to other substrates. However, unlike CHO cells, sialyltransferase activity and CMP-NeuAc substrate were not present in uninfected or baculovirus-infected Sf9 cells. Similar data were obtained for other insect cell hosts, Sf21 and Ea4. We conclude that although the limitations on intracellular transport and secretion of recombinant proteins in mammalian and insect cells are similar, N-glycan processing in Sf insect cells is limited, and that genetic modification of N-glycan processing in these insect cell lines will be constrained by substrate availability to terminal galactosylation.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2009
Chinyere K. Okoro; Roselyn Brown; Amanda L. Jones; Barbara A. Andrews; Juan A. Asenjo; Michael Goodfellow; Alan T. Bull
The Atacama Desert presents one of the most extreme environments on Earth and we report here the first extensive isolations of actinomycetes from soils at various locations within the Desert. The use of selective isolation procedures enabled actinomycetes to be recovered from arid, hyper-arid and even extreme hyper-arid environments in significant numbers and diversity. In some cases actinomycetes were the only culturable bacteria to be isolated under the conditions of this study. Phylogenetic analysis and some phenotypic characterisation revealed that the majority of isolates belonged to members of the genera Amycolatopsis, Lechevalieria and Streptomyces, a high proportion of which represent novel centres of taxonomic variation. The results of this study support the view that arid desert soils constitute a largely unexplored repository of novel bacteria, while the high incidence of non-ribosomal peptide synthase genes in our isolates recommend them as promising material in screening for new bioactive natural products.
Applied Microbiology and Biotechnology | 1999
M. Caldeira; Stephen C. Heald; Maria F. Carvalho; Isabel Vasconcelos; Alan T. Bull; Paula M. L. Castro
Abstract A bacterial consortium that can degrade chloro- and nitrophenols has been isolated from the rhizosphere of Phragmitis communis. Degradation of 4-chlorophenol (4-CP) by a consortium attached to granular activated carbon (GAC) in a biofilm reactor was evaluated during both open and closed modes of operation. During the operation of the biofilm reactor, 4-CP was not detected in the column effluent, being either adsorbed to the GAC or biodegraded by the consortium. When 4-CP at 100 mg l−1 was fed to the column in open mode operation (20 mg g−1 GAC total supply), up to 27% was immediately available for biodegradation, the rest being adsorbed to the GAC. Biodegradation continued after the system was returned to closed mode operation, indicating that GAC bound 4-CP became available to the consortium. Biofilm batch cultures supplied with 10–216 mg 4-CP g−1 GAC suggested that a residual fraction of GAC-bound 4-CP was biologically unavailable. The consortium was able to metabolise 4-CP after perturbations by the addition of chromium (Cr VI) at 1–5 mg l−1 and nitrate at concentrations up to 400 mg l−1. The development of the biofilm structure was analysed by scanning electron microscopy and confocal laser scanning microscopy (CLSM) techniques. CLSM revealed a heterogeneous structure with a network of channels throughout the biofilm, partially occupied by microbial exopolymer structures.
Applied Microbiology and Biotechnology | 1991
Paul M. Hayter; Elizabeth M. Curling; Anthony J. Baines; Nigel Jenkins; Ian Salmon; Philip G. Strange; Alan T. Bull
SummaryRecombinant human interferon-λ production by Chinese hamster ovary cells was restricted to the growth phase of batch cultures in serum-free medium. The specific interferon production rate was highest during the initial period of exponential growth but declined subsequently in parallel with specific growth rate. This decline in specific growth rate and interferon productivity was associated with a decline in specific metabolic activity as determined by the rate of glucose uptake and the rates of lactate and ammonia production. The ammonia and lactate concentrations that had accumulated by the end of the batch culture were not inhibitory to growth. Glucose was exhausted by the end of the growth phase but increased glucose concentrations did not improve the cell yield or interferon production kinetics. Analysis of amino acid metabolism showed that glutamine and asparagine were exhausted by the end of the growth phase, but supplementation of these amino acids did not improve either cell or product yields. When glutamine was omitted from the growth medium there was no cell proliferation but interferon production occurred, suggesting that recombinant protein production can be uncoupled from cell proliferation.
Applied Microbiology and Biotechnology | 1992
Paula M. L. Castro; Paul M. Hayter; Andrew P. Ison; Alan T. Bull
SummaryThe importance of serum-free medium components on the growth of Chinese hamster ovary (CHO) cells and production of recombinant human interferon(IFN)-gamma was investigated. The complexity of the medium led to the adoption of a statistical optimization approach based on a Plackett-Burman design. From this analysis a set of nutritional components was identified as important for cell growth and recombinant protein production. Glycine was identified as an important determinant of specific growth rate, whereas for cell production bovine serum albumin (BSA), phenylalanine and tyrosine were also identified as important. BSA, sodium pyruvate, glutamate, methionine, proline, histidine, hydroxyproline, tyrosine and phenylalanine were shown to be important for IFN-gamma production. Other medium components, such as insulin, arginine, aspartate and serine produced an inhibitory effect on both cell growth and IFN-gamma production. The effect of the stimulatory nutrients as a whole group was tested by increasing their concentration in the medium. A significant improvement in specific cell growth rate, cell production and IFN-gamma production (up to 45%) was achieved on both shake-flask and fermentor cultures. An increase in the medium concentration of the negative variables had only a small inhibitory effect (approximately 10%) on the same parameters. Analysis of the effects of the group of stimulatory amino acids and BSA on CHO cell growth showed that the effect of the former was independent of BSA.