Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alba Torrents de la Peña is active.

Publication


Featured researches published by Alba Torrents de la Peña.


PLOS Pathogens | 2013

A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies

Rogier W. Sanders; Ronald Derking; Albert Cupo; Jean-Philippe Julien; Anila Yasmeen; Natalia de Val; Helen J. Kim; Claudia Blattner; Alba Torrents de la Peña; Jacob Korzun; Michael Golabek; Kevin de los Reyes; Thomas J. Ketas; Marit J. van Gils; C. Richter King; Ian A. Wilson; Andrew B. Ward; Per Johan Klasse; John P. Moore

A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.


Immunity | 2014

Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers.

Claudia Blattner; Jeong Hyun Lee; Kwinten Sliepen; Ronald Derking; Emilia Falkowska; Alba Torrents de la Peña; Albert Cupo; Jean-Philippe Julien; Marit J. van Gils; Peter S. Lee; Wenjie Peng; James C. Paulson; Pascal Poignard; Dennis R. Burton; John P. Moore; Rogier W. Sanders; Ian A. Wilson; Andrew B. Ward

All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer.


Cell | 2015

Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes

Steven W. de Taeye; Gabriel Ozorowski; Alba Torrents de la Peña; Jean-Philippe Julien; Tom L. G. M. van den Kerkhof; Judith A. Burger; Laura K. Pritchard; Pavel Pugach; Anila Yasmeen; Jordan Crampton; Joyce K. Hu; Ilja Bontjer; Jonathan L. Torres; Heather Arendt; Joanne DeStefano; Wayne C. Koff; Hanneke Schuitemaker; Dirk Eggink; Ben Berkhout; Hansi J. Dean; Celia C. LaBranche; Shane Crotty; Max Crispin; David C. Montefiori; P. J. Klasse; Kelly K. Lee; John P. Moore; Ian A. Wilson; Andrew B. Ward; Rogier W. Sanders

The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs.


Immunity | 2015

Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans.

Fernando Garces; Jeong Hyun Lee; Natalia de Val; Alba Torrents de la Peña; Leopold Kong; Cristina Puchades; Yuanzi Hua; Robyn L. Stanfield; Dennis R. Burton; John P. Moore; Rogier W. Sanders; Andrew B. Ward; Ian A. Wilson

The high-mannose patch on the HIV-1 envelope (Env) glycoprotein is the epicenter for binding of the potent broadly neutralizing PGT121 family of antibodies, but strategies for generating such antibodies by vaccination have not been defined. We generated structures of inferred antibody intermediates by X-ray crystallography and electron microscopy to elucidate the molecular events that occurred during evolution of this family. Binding analyses revealed that affinity maturation was primarily focused on avoiding, accommodating, or binding the N137 glycan. The overall antibody approach angle to Env was defined very early in the maturation process, yet some variation evolved in the PGT121 family branches that led to differences in glycan specificities in their respective epitopes. Furthermore, we determined a crystal structure of the recombinant BG505 SOSIP.664 HIV-1 trimer with a PGT121 family member at 3.0 Å that, in concert with these antibody intermediate structures, provides insights to advance design of HIV vaccine candidates.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens

Jean-Philippe Julien; Jeong Hyun Lee; Gabriel Ozorowski; Yuanzi Hua; Alba Torrents de la Peña; Steven W. de Taeye; Travis Nieusma; Albert Cupo; Anila Yasmeen; Michael Golabek; Pavel Pugach; Per Johan Klasse; John P. Moore; Rogier W. Sanders; Andrew B. Ward; Ian A. Wilson

Significance A successful HIV-1 vaccine should generate an immune response capable of neutralizing the enormous diversity of globally circulating viruses. Here, we report the discovery and characterization of two clade C recombinant envelope glycoprotein trimers with native-like structural and antigenic properties, including epitopes for all known classes of broadly neutralizing antibodies (bnAbs). Together with previously described trimers from other clades, these two new trimers will aid in immunization strategies designed to induce bnAbs to HIV-1. A key challenge in the quest toward an HIV-1 vaccine is design of immunogens that can generate a broadly neutralizing antibody (bnAb) response against the enormous sequence diversity of the HIV-1 envelope glycoprotein (Env). We previously demonstrated that a recombinant, soluble, fully cleaved SOSIP.664 trimer based on the clade A BG505 sequence is a faithful antigenic and structural mimic of the native trimer in its prefusion conformation. Here, we sought clade C native-like trimers with comparable properties. We identified DU422 and ZM197M SOSIP.664 trimers as being appropriately thermostable (Tm of 63.4 °C and 62.7 °C, respectively) and predominantly native-like, as determined by negative-stain electron microscopy (EM). Size exclusion chromatography, ELISA, and surface plasmon resonance further showed that these trimers properly display epitopes for all of the major bnAb classes, including quaternary-dependent, trimer-apex (e.g., PGT145) and gp120/gp41 interface (e.g., PGT151) epitopes. A cryo-EM reconstruction of the ZM197M SOSIP.664 trimer complexed with VRC01 Fab against the CD4 binding site at subnanometer resolution revealed a striking overall similarity to its BG505 counterpart with expected local conformational differences in the gp120 V1, V2, and V4 loops. These stable clade C trimers contribute additional diversity to the pool of native-like Env immunogens as key components of strategies to induce bnAbs to HIV-1.


Immunity | 2017

Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches

Matthias Pauthner; Colin Havenar-Daughton; Devin Sok; Joseph P. Nkolola; Raiza Bastidas; Archana V. Boopathy; Diane G. Carnathan; Abishek Chandrashekar; Kimberly M. Cirelli; Christopher A. Cottrell; Alexey Eroshkin; Javier Guenaga; Kirti Kaushik; Daniel W. Kulp; Jinyan Liu; Laura E. McCoy; Aaron L. Oom; Gabriel Ozorowski; Kai W. Post; Shailendra Kumar Sharma; Jon M. Steichen; Steven W. de Taeye; Talar Tokatlian; Alba Torrents de la Peña; Salvatore T. Butera; Celia C. LaBranche; David C. Montefiori; Guido Silvestri; Ian A. Wilson; Darrell J. Irvine

Summary The development of stabilized recombinant HIV envelope trimers that mimic the virion surface molecule has increased enthusiasm for a neutralizing antibody (nAb)‐based HIV vaccine. However, there is limited experience with recombinant trimers as immunogens in nonhuman primates, which are typically used as a model for humans. Here, we tested multiple immunogens and immunization strategies head‐to‐head to determine their impact on the quantity, quality, and kinetics of autologous tier 2 nAb development. A bilateral, adjuvanted, subcutaneous immunization protocol induced reproducible tier 2 nAb responses after only two immunizations 8 weeks apart, and these were further enhanced by a third immunization with BG505 SOSIP trimer. We identified immunogens that minimized non‐neutralizing V3 responses and demonstrated that continuous immunogen delivery could enhance nAb responses. nAb responses were strongly associated with germinal center reactions, as assessed by lymph node fine needle aspiration. This study provides a framework for preclinical and clinical vaccine studies targeting nAb elicitation. Graphical Abstract Figure. No Caption available. HighlightsImmunization protocols for rapid and consistent generation of autologous tier 2 nAbsGerminal center responses predict and correlate with HIV nAbs after immunizationEnv protein design curtails responses to the non‐neutralizing V3‐loop epitopeSubcutaneous and extended immunogen delivery enhances nAb generation &NA; There is limited experience with recombinant Env trimer immunogens in nonhuman primates. Pauthner et al. compare multiple Env trimer designs and immunization strategies for generating HIV neutralizing antibodies. They identify protocols for rapid and consistent generation of tier 2 nAbs, providing a framework for future pre‐clinical and clinical vaccine studies.


Nature Communications | 2015

Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike

Jeong Hyun Lee; Daniel P. Leaman; Arthur S. Kim; Alba Torrents de la Peña; Kwinten Sliepen; Anila Yasmeen; Ronald Derking; Alejandra Ramos; Steven W. de Taeye; Gabriel Ozorowski; Florian Klein; Dennis R. Burton; Michel C. Nussenzweig; Pascal Poignard; John P. Moore; Per Johan Klasse; Rogier W. Sanders; Michael B. Zwick; Ian A. Wilson; Andrew B. Ward

The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120–gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120–gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes.


Journal of Immunology | 2016

Cytokine-Independent Detection of Antigen-Specific Germinal Center T Follicular Helper Cells in Immunized Nonhuman Primates Using a Live Cell Activation-Induced Marker Technique

Colin Havenar-Daughton; Samantha M. Reiss; Diane G. Carnathan; Jennifer E. Wu; Kayla Kendric; Alba Torrents de la Peña; Sudhir Pai Kasturi; Jennifer M. Dan; Marcella Bothwell; Rogier W. Sanders; Bali Pulendran; Guido Silvestri; Shane Crotty

A range of current candidate AIDS vaccine regimens are focused on generating protective HIV-neutralizing Ab responses. Many of these efforts rely on the rhesus macaque animal model. Understanding how protective Ab responses develop and how to increase their efficacy are both major knowledge gaps. Germinal centers (GCs) are the engines of Ab affinity maturation. GC T follicular helper (Tfh) CD4 T cells are required for GCs. Studying vaccine-specific GC Tfh cells after protein immunizations has been challenging, as Ag-specific GC Tfh cells are difficult to identify by conventional intracellular cytokine staining. Cytokine production by GC Tfh cells may be intrinsically limited in comparison with other Th effector cells, as the biological role of a GC Tfh cell is to provide help to individual B cells within the GC, rather than secreting large amounts of cytokines bathing a tissue. To test this idea, we developed a cytokine-independent method to identify Ag-specific GC Tfh cells. RNA sequencing was performed using TCR-stimulated GC Tfh cells to identify candidate markers. Validation experiments determined CD25 (IL-2Rα) and OX40 to be highly upregulated activation-induced markers (AIM) on the surface of GC Tfh cells after stimulation. In comparison with intracellular cytokine staining, the AIM assay identified >10-fold more Ag-specific GC Tfh cells in HIV Env protein–immunized macaques (BG505 SOSIP). CD4 T cells in blood were also studied. In summary, AIM demonstrates that Ag-specific GC Tfh cells are intrinsically stingy producers of cytokines, which is likely an essential part of their biological function.


Acta Crystallographica Section D-biological Crystallography | 2015

Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer

Leopold Kong; Alba Torrents de la Peña; Marc C. Deller; Fernando Garces; Kwinten Sliepen; Yuanzi Hua; Robyn L. Stanfield; Rogier W. Sanders; Ian A. Wilson

The HIV-1 envelope gp160 glycoprotein (Env) is a trimer of gp120 and gp41 heterodimers that mediates cell entry and is the primary target of the humoral immune response. Broadly neutralizing antibodies (bNAbs) to HIV-1 have revealed multiple epitopes or sites of vulnerability, but mapping of most of these sites is incomplete owing to a paucity of structural information on the full epitope in the context of the Env trimer. Here, a crystal structure of the soluble BG505 SOSIP gp140 trimer at 4.6 Å resolution with the bNAbs 8ANC195 and PGT128 reveals additional interactions in comparison to previous antibody-gp120 structures. For 8ANC195, in addition to previously documented interactions with gp120, a substantial interface with gp41 is now elucidated that includes extensive interactions with the N637 glycan. Surprisingly, removal of the N637 glycan did not impact 8ANC195 affinity, suggesting that the antibody has evolved to accommodate this glycan without loss of binding energy. PGT128 indirectly affects the N262 glycan by a domino effect, in which PGT128 binds to the N301 glycan, which in turn interacts with and repositions the N262 glycan, thereby illustrating the important role of neighboring glycans on epitope conformation and stability. Comparisons with other Env trimer and gp120 structures support an induced conformation for glycan N262, suggesting that the glycan shield is allosterically modified upon PGT128 binding. These complete epitopes of two broadly neutralizing antibodies on the Env trimer can now be exploited for HIV-1 vaccine design.


Cell Reports | 2017

Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization

Alba Torrents de la Peña; Jean-Philippe Julien; Steven W. de Taeye; Fernando Garces; Gabriel Ozorowski; Laura K. Pritchard; Anna-Janina Behrens; Eden P. Go; Judith A. Burger; Edith E. Schermer; Kwinten Sliepen; Thomas J. Ketas; Pavel Pugach; Anila Yasmeen; Christopher A. Cottrell; Jonathan L. Torres; Charlotte D. Vavourakis; Marit J. van Gils; Celia C. LaBranche; David C. Montefiori; Heather Desaire; Max Crispin; Per Johan Klasse; Kelly K. Lee; John P. Moore; Andrew B. Ward; Ian A. Wilson; Rogier W. Sanders

Summary The production of native-like recombinant versions of the HIV-1 envelope glycoprotein (Env) trimer requires overcoming the natural flexibility and instability of the complex. The engineered BG505 SOSIP.664 trimer mimics the structure and antigenicity of native Env. Here, we describe how the introduction of new disulfide bonds between the glycoprotein (gp)120 and gp41 subunits of SOSIP trimers of the BG505 and other genotypes improves their stability and antigenicity, reduces their conformational flexibility, and helps maintain them in the unliganded conformation. The resulting next-generation SOSIP.v5 trimers induce strong autologous tier-2 neutralizing antibody (NAb) responses in rabbits. In addition, the BG505 SOSIP.v6 trimers induced weak heterologous NAb responses against a subset of tier-2 viruses that were not elicited by the prototype BG505 SOSIP.664. These stabilization methods can be applied to trimers from multiple genotypes as components of multivalent vaccines aimed at inducing broadly NAbs (bNAbs).

Collaboration


Dive into the Alba Torrents de la Peña's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian A. Wilson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Ozorowski

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge