Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marit J. van Gils is active.

Publication


Featured researches published by Marit J. van Gils.


PLOS Pathogens | 2013

A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies

Rogier W. Sanders; Ronald Derking; Albert Cupo; Jean-Philippe Julien; Anila Yasmeen; Natalia de Val; Helen J. Kim; Claudia Blattner; Alba Torrents de la Peña; Jacob Korzun; Michael Golabek; Kevin de los Reyes; Thomas J. Ketas; Marit J. van Gils; C. Richter King; Ian A. Wilson; Andrew B. Ward; Per Johan Klasse; John P. Moore

A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.


Immunity | 2014

Broadly Neutralizing HIV Antibodies Define a Glycan-Dependent Epitope on the Prefusion Conformation of gp41 on Cleaved Envelope Trimers

Emilia Falkowska; Khoa Le; Alejandra Ramos; Katherine Doores; Jeong Hyun Lee; Claudia Blattner; Alejandro Ramirez; Ronald Derking; Marit J. van Gils; Chi-Hui Liang; Ryan McBride; Benjamin von Bredow; Sachin S. Shivatare; Chung-Yi Wu; Po-Ying Chan-Hui; Yan Liu; Ten Feizi; Michael B. Zwick; Wayne C. Koff; Michael S. Seaman; Kristine Swiderek; John P. Moore; David T. Evans; James C. Paulson; Chi-Huey Wong; Andrew B. Ward; Ian A. Wilson; Rogier W. Sanders; Pascal Poignard; Dennis R. Burton

Broadly neutralizing HIV antibodies are much sought after (a) to guide vaccine design, both as templates and as indicators of the authenticity of vaccine candidates, (b) to assist in structural studies, and (c) to serve as potential therapeutics. However, the number of targets on the viral envelope spike for such antibodies has been limited. Here, we describe a set of human monoclonal antibodies that define what is, to the best of our knowledge, a previously undefined target on HIV Env. The antibodies recognize a glycan-dependent epitope on the prefusion conformation of gp41 and unambiguously distinguish cleaved from uncleaved Env trimers, an important property given increasing evidence that cleavage is required for vaccine candidates that seek to mimic the functional HIV envelope spike. The availability of this set of antibodies expands the number of vaccine targets on HIV and provides reagents to characterize the native envelope spike.


Immunity | 2014

Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers.

Claudia Blattner; Jeong Hyun Lee; Kwinten Sliepen; Ronald Derking; Emilia Falkowska; Alba Torrents de la Peña; Albert Cupo; Jean-Philippe Julien; Marit J. van Gils; Peter S. Lee; Wenjie Peng; James C. Paulson; Pascal Poignard; Dennis R. Burton; John P. Moore; Rogier W. Sanders; Ian A. Wilson; Andrew B. Ward

All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex

Devin Sok; Marit J. van Gils; Matthias Pauthner; Jean-Philippe Julien; Karen L. Saye-Francisco; Jessica Hsueh; Bryan Briney; Jeong Hyun Lee; Khoa Le; Peter S. Lee; Yuanzi Hua; Michael S. Seaman; John P. Moore; Andrew B. Ward; Ian A. Wilson; Rogier W. Sanders; Dennis R. Burton

Significance Despite the high antigenic diversity of the HIV envelope trimer (Env), broadly neutralizing antibodies (bnAbs) have identified conserved regions that serve as targets for vaccine design. One of these regions is located at the apex of Env and is expressed fully only in the context of the correctly folded trimer. This work describes the isolation of bnAbs that target this region using a recombinant native-like Env trimer as an affinity reagent to sort specific antibody-producing cells. Characterization of these antibodies reveals a highly diverse antibody response against the trimer apex and provides molecular information that will be useful in the design of immunogens to elicit bnAbs to this region of Env. Broadly neutralizing antibodies (bnAbs) targeting the trimer apex of HIV envelope are favored candidates for vaccine design and immunotherapy because of their great neutralization breadth and potency. However, methods of isolating bnAbs against this site have been limited by the quaternary nature of the epitope region. Here we report the use of a recombinant HIV envelope trimer, BG505 SOSIP.664 gp140, as an affinity reagent to isolate quaternary-dependent bnAbs from the peripheral blood mononuclear cells of a chronically infected donor. The newly isolated bnAbs, named “PGDM1400–1412,” show a wide range of neutralization breadth and potency. One of these variants, PGDM1400, is exceptionally broad and potent with cross-clade neutralization coverage of 83% at a median IC50 of 0.003 µg/mL. Overall, our results highlight the utility of BG505 SOSIP.664 gp140 as a tool for the isolation of quaternary-dependent antibodies and reveal a mosaic of antibody responses against the trimer apex within a clonal family.


The Journal of Infectious Diseases | 2010

Cross-Reactive Neutralizing Humoral Immunity Does Not Protect from HIV Type 1 Disease Progression

Zelda Euler; Marit J. van Gils; Evelien M. Bunnik; Pham Phung; Becky Schweighardt; Terri Wrin; Hanneke Schuitemaker

Broadly reactive neutralizing antibodies are the focus of human immunodeficiency virus (HIV) type 1 vaccine design. However, only little is known about their role in acquired immunodeficiency syndrome (AIDS) pathogenesis and the factors associated with their development. Here we used a multisubtype panel of 23 HIV-1 variants to determine the prevalence of cross-reactive neutralizing activity in serum samples obtained approximately 35 months after seroconversion from 82 HIV-1 subtype B-infected participants from the Amsterdam Cohort Studies on HIV Infection and AIDS. Of these patients, 33%, 48%, and 20%, respectively, had strong, moderate, or absent cross-reactive neutralizing activity in serum. Viral RNA load at set point and AIDS-free survival were similar for the 3 patient groups. However, higher cross-reactive neutralizing activity was significantly associated with lower CD4(+) T cell counts before and soon after infection. Our findings underscore the importance of vaccine-elicited immunity in protecting from infection. The association between CD4(+) T cell counts and neutralizing humoral immunity may provide new clues as to how to achieve this goal.


Cell | 2015

Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice.

Pia Dosenovic; Lotta von Boehmer; Amelia Escolano; Joseph G. Jardine; Natalia T. Freund; Alexander D. Gitlin; Andrew T. McGuire; Daniel W. Kulp; Thiago Y. Oliveira; Louise Scharf; John Pietzsch; Matthew D. Gray; Albert Cupo; Marit J. van Gils; Kai Hui Yao; Cassie Liu; Anna Gazumyan; Michael S. Seaman; Pamela J. Bjorkman; Rogier W. Sanders; John P. Moore; Leonidas Stamatatos; William R. Schief; Michel C. Nussenzweig

A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing germline antibodies but elicit bNAbs by selecting for a restricted group of light chains bearing specific somatic mutations that enhance neutralizing activity. The data suggest that vaccination to elicit anti-HIV-1 antibodies will require immunization with a succession of related immunogens.


Virology | 2013

Broadly neutralizing antibodies against HIV-1: templates for a vaccine

Marit J. van Gils; Rogier W. Sanders

The need for an effective vaccine to prevent the global spread of human immunodeficiency virus type 1 (HIV-1) is well recognized. Passive immunization and challenge studies in non-human primates testify that broadly neutralizing antibodies (BrNAbs) can accomplish protection against infection. In recent years, the introduction of new techniques has facilitated the discovery of an unprecedented number of new human BrNAbs that target and delineate diverse conserved epitopes on the envelope glycoprotein spike (Env). The epitopes of these BrNAbs can serve as templates for immunogen design aimed to induce similar antibodies. Here we will review the characteristics of the different classes of BrNAbs and their target epitopes, as well as factors associated with their development and implications for vaccine design.


AIDS | 2009

Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression.

Marit J. van Gils; Zelda Euler; Becky Schweighardt; Terri Wrin; Hanneke Schuitemaker

Objective:The native envelope gp160 trimer of HIV-1 is thought to shield vulnerable epitopes that could otherwise elicit effectively neutralizing antibodies. However, little is known about the prevalence of naturally occurring broadly neutralizing activity in serum of HIV-1-infected individuals. Methods:Here, we studied 35 participants of the Amsterdam Cohort Studies on HIV-1 infection (20 long-term nonprogressors and 15 progressors) for the presence of cross-reactive neutralizing activity in their sera at 2 and 4 years after seroconversion. Neutralizing activity was tested in a pseudovirus assay, against a panel of HIV-1 envelope variants from subtypes A, B, C, and D. Results:Already at year 2 after seroconversion, seven out of 35 individuals (20%) had cross-reactive neutralizing activity, which increased to 11 individuals (31%) at 4 years after seroconversion. There was no difference in the prevalence of cross-reactive neutralizing serum activity between long-term nonprogressors and progressors.Interestingly, high plasma viral RNA load and low CD4+ cell count at set-point were associated with early development of cross-reactive neutralizing activity. Neutralization titers in serum increased during the course of infection for 91% of individuals studied here, although less rapidly for those who did not develop cross-reactive neutralizing activity. Conclusion:Overall, we here demonstrate a relatively high prevalence of cross-reactive neutralizing serum activity in HIV-1-infected patients, which increased with duration of infection. These data may imply that immunogenicity of the native envelope spike of HIV-1 for eliciting cross-reactive humoral immune responses may be better than previously anticipated.


Journal of Virology | 2010

Rapid Escape from Preserved Cross-Reactive Neutralizing Humoral Immunity without Loss of Viral Fitness in HIV-1-Infected Progressors and Long-Term Nonprogressors

Marit J. van Gils; Evelien M. Bunnik; Judith A. Burger; Yodit Jacob; Becky Schweighardt; Terri Wrin; Hanneke Schuitemaker

ABSTRACT A substantial proportion of human immunodeficiency virus type 1 (HIV-1)-infected individuals has cross-reactive neutralizing activity in serum, with a similar prevalence in progressors and long-term nonprogressors (LTNP). We studied whether disease progression in the face of cross-reactive neutralizing serum activity is due to fading neutralizing humoral immunity over time or to viral escape. In three LTNP and three progressors, high-titer cross-reactive HIV-1-specific neutralizing activity in serum against a multiclade pseudovirus panel was preserved during the entire clinical course of infection, even after AIDS diagnosis in progressors. However, while early HIV-1 variants from all six individuals could be neutralized by autologous serum, the autologous neutralizing activity declined during chronic infection. This could be attributed to viral escape and the apparent inability of the host to elicit neutralizing antibodies to the newly emerging viral escape variants. Escape from autologous neutralizing activity was not associated with a reduction in the viral replication rate in vitro. Escape from autologous serum with cross-reactive neutralizing activity coincided with an increase in the length of the variable loops and in the number of potential N-linked glycosylation sites in the viral envelope. Positive selection pressure was observed in the variable regions in envelope, suggesting that, at least in these individuals, these regions are targeted by humoral immunity with cross-reactive potential. Our results may imply that the ability of HIV-1 to rapidly escape cross-reactive autologous neutralizing antibody responses without the loss of viral fitness is the underlying explanation for the absent effect of potent cross-reactive neutralizing humoral immunity on the clinical course of infection.


Journal of Virology | 2011

Longer V1V2 Region with Increased Number of Potential N-Linked Glycosylation Sites in the HIV-1 Envelope Glycoprotein Protects against HIV-Specific Neutralizing Antibodies

Marit J. van Gils; Evelien M. Bunnik; Brigitte Boeser-Nunnink; Judith A. Burger; Marijke Terlouw-Klein; Naomi Verwer; Hanneke Schuitemaker

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) has the ability to adapt to the host environment by escaping from host immune responses. We previously observed that escape from humoral immunity, both at the individual and at a population level, coincided with longer variable loops and an increased number of potential N-linked glycosylation sites (PNGS) in the viral envelope glycoprotein (Env) and, in particular, in variable regions 1 and 2 (V1V2). Here, we provide several lines of evidence for the role of V1V2 in the resistance of HIV-1 to neutralizing antibodies. First, we determined that the increasing neutralization resistance of a reference panel of tier-categorized neutralization-sensitive and -resistant HIV-1 variants coincided with a longer V1V2 loop containing more PNGS. Second, an exchange of the different variable regions of Env from a neutralization-sensitive HIV-1 variant into a neutralization-resistant escape variant from the same individual revealed that the V1V2 loop is a strong determinant for sensitivity to autologous-serum neutralization. Third, exchange of the V1V2 loop of neutralization-sensitive HIV-1 variants from historical seroconverters with the V1V2 loop of neutralization-resistant HIV-1 variants from contemporary seroconverters decreased the neutralization sensitivity to CD4-binding site-directed antibodies. Overall, we demonstrate that an increase in the length of the V1V2 loop and/or the number of PNGS in that same region of the HIV-1 envelope glycoprotein is directly involved in the protection of HIV-1 against HIV-specific neutralizing antibodies, possibly by shielding underlying epitopes in the envelope glycoprotein from antibody recognition.

Collaboration


Dive into the Marit J. van Gils's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis R. Burton

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ian A. Wilson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zelda Euler

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Devin Sok

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge