Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Calbet is active.

Publication


Featured researches published by Albert Calbet.


Environmental Toxicology and Chemistry | 2005

Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae

Carlos Barata; Albert Calbet; Enric Saiz; Laura Ortiz; Josep M. Bayona

In the present study, the acute toxicity of 10 polycyclic aromatic hydrocarbons (PAHs) associated with the Prestige fuel oil spill (Spain, 2002) were evaluated, either as single substances or in mixtures, in adults of the copepod Oithona davisae. All but dimethylphenanthrene had negative effects on O. davisae survival at concentrations below their water solubility, with 48-h median lethal concentrations for naphthalene and pyrene of 56.1 and 0.8 micromol/L, respectively, making these the least and most toxic compounds. Polycyclic aromatic hydrocarbons had narcotic effects on copepods, as evidenced by the lack of motility at lower concentrations than those causing death. Naphthalene showed the greatest narcotic effects, and phenanthrene showed minor effects. Acute toxicity of the tested PAHs was inversely related (r2 = 0.9) with their octanol-water partition coefficient, thereby confirming the validity of the baseline quantitative structure-activity regression models for predicting the toxicity of PAH compounds in copepod species. When supplied in mixtures, the toxic effect of PAHs was additive. These results indicate that the many PAHs in an oil spill can be considered unambiguous baseline toxicants (class 1) acting additively as nonpolar narcotics in copepods; hence, their individual and combined toxicity can be predicted using their octanol-water partition coefficient.


Hydrobiologia | 2011

Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations

Enric Saiz; Albert Calbet

Here, we report insights from the compilation and analysis of data on marine calanoid copepod feeding rates in the ocean. Our study shows that food availability and body weight are major factors shaping copepod feeding rates in the field, with a relatively minor role of temperature. Although the maximal feeding rates of copepods that are observed in the field agree with the well-known 3/4 of body size scaling rule for animals, copepod feeding in the oceans is typically limited and departs from this rule. Ciliates and dinoflagellates appear to be highly relevant in the composition of copepod diets, and this represents an indirect increase in the flux of primary production that is likely to reach the upper trophic levels; this contribution is higher in the less productive systems and may help to explain accounts of proportionally higher standing stocks of copepods supported per unit of primary producer biomass in oligotrophic environments. Contrary to common belief, diatoms emerge from our dataset as small contributors to the diet of copepods, except in some very productive ecosystems. We have also evaluated the bias in the estimation of copepod grazing rates due to within-bottle trophic cascade effects caused by the removal of microheterotrophs by copepods. This release of microzooplankton grazing pressure accounts for a relevant, but moderate, increase in copepod grazing estimates (ca. 20–30%); this bias has an effect on both the carbon flux budgets through copepods and on our view of their diet composition. However, caution is recommended against the indiscriminate use of corrections because they may turn out to be overestimates of the bias. We advise that both uncorrected and corrected grazing rates should be provided in future studies, as they probably correspond to the lower and upper boundaries of the true grazing rates.


Deep-sea Research Part Ii-topical Studies in Oceanography | 2002

Seasonal dynamics of phytoplankton in the Antarctic Polar Front region at 170°W

Michael R. Landry; Karen E. Selph; Susan L Brown; Mark R. Abbott; Christopher I. Measures; Suzanna Vink; Colleen B Allen; Albert Calbet; Stephanie Christensen; Hector Nolla

Phytoplankton dynamics in the region of 55-70degreesS, 170degreesW were investigated using Sea-viewing Wide Field-of-View Sensor satellite imagery, shipboard sampling and experimental rate assessments during austral spring and summer, 1997-1998. We used image-analysis microscopy to characterize community biomass and composition, and dilution experiments to estimate growth and microzooplankton grazing rates. Iron concentrations were determined by flow-injection analysis. The phytoplankton increase began slowly with the onset of stratification at the Polar Front (PF) (60-61degreesS) in early November. Seasonally enhanced levels of chlorophyll were found as far north as 58degreesS, but mixed-layer phytoplankton standing stock was highest, approaching 200 mg C m(-3), in the region between the receding ice edge and a strong silicate gradient, which migrated from similar to62degreesS to 65degreesS during the study period. The most southern stations sampled on four cruises were characterized by small pennate diatoms and Phaeocystis. From the PF to the Southern Antarctic circumpolar current front (similar to65degreesS), this ice margin assemblage was seasonally replaced by a community dominated by large diatoms. The large diatom community developed only in waters where measured iron concentrations were initially high (greater than or equal to0.2 nM), and crashed when dissolved silicate was depleted to low levels. Phytoplankton growth rates were highest (0.5-0.6 d(-1)) between the PF and silicate front (60degreesS and 63degreesS) in December. In January, growth rates were lowest (0.1 d(-1)) near the PF, and the highest rates (0.34.4 d(-1)) were found in experiments between 64.8degreesS and 67.8degreesS. Phytoplankton production estimates were highest south of the PF through December and January, averaging 2.2-2.4 mmol C m(-3) d(-1) and reaching levels of 5 mmol cm(-3) d(-1) (64.8degreesS and 67.8degreesS in January). Microzooplankton grazers consumed 54-95% of production for experiments conducted on four AESOPS cruises. They were less efficient in balancing growth rates during the time of highest phytoplankton growth and increase in December, and most efficient in February-March, after the large diatom bloom had collapsed. The diatom bloom region in the present study is in an upwelling zone for Antarctic circumpolar deep water with high iron content. This may explain why this marginal ice zone differs from others where blooms have not been observed


Environmental Pollution | 2009

Lethal and sublethal effects of naphthalene and 1,2-dimethylnaphthalene on naupliar and adult stages of the marine cyclopoid copepod Oithona davisae

Enric Saiz; Juancho Movilla; Lidia Yebra; Carlos Barata; Albert Calbet

Short-term (24h) exposure experiments have been conducted to determine the effects of two environmental relevant polycyclic aromatic hydrocarbons (PAHs), naphthalene (NAPH) and dimethylnaphthalene (C2-NAPH), on the naupliar and adult stages of the marine cyclopoid copepod Oithona davisae. To resemble more realistic conditions, those exposure experiments were conducted under the presence of food. The naupliar stages evidenced lower tolerance to PAH exposure regarding narcotic and lethal effects than adults. Copepod feeding activity showed to be very sensitive to the presence of the studied PAHs, detrimental effects occurring at toxic concentrations ca. 2-3 fold lower than for narcotic effects. In addition we report PAH-mediated changes in cell size and growth rate of the prey item, the heterotrophic dinoflagellate Oxyrrhis marina, that could indirectly affect copepod feeding and help explain hormesis-like responses in our feeding experiments.


Polar Biology | 2010

The role of arctic zooplankton in biogeochemical cycles: respiration and excretion of ammonia and phosphate during summer

Miquel Alcaraz; Rodrigo Almeda; Albert Calbet; Enric Saiz; Carlos M. Duarte; Sebastien Lasternas; Susana Agustí; Reyes de Santiago; Juan Ignacio Movilla; A. Alonso

The study of the structural and functional properties of key components of polar marine ecosystems has received increased attention in order to better understand the ecological consequences of future sea temperature rise and seasonal ice retraction. Owing to this purpose, during the ATOS-Arctic cruise, held in July 2007 in the framework of the 2007–2008 International Polar Year, we studied the respiratory carbon demand of mesozooplankton as well as their contribution to the regeneration of inorganic nitrogen and phosphorus (NH4-N and PO4-P) via excretion. The studied area comprised several stations along a latitudinal gradient in the East Greenland current, plus a network of stations NW of the Svalbard islands. The specific respiratory carbon losses and phosphorus (PO4-P) excretion rates were similar or slightly higher than some reports for Arctic mesozooplankton, but the nitrogen (NH4-N) excretion rates were higher by a factor of 3 when compared with previous data sets. The mesozooplankton respiratory losses were equivalent to 23% of primary production, and at turn zooplankton contributed by excretion to more than 50% of the N and P required by phytoplankton. Although C:N, C:P and N:P metabolic atomic quotients almost coincided with the average Redfield’s stoichiometric ratios, the low C:N values when compared to previous reports suggested a predominance of protein-related metabolic substrates. The potential consequences of changes observed in the C:N, N:P and C:P metabolic ratios of mesozooplankton for Arctic marine ecosystems are discussed.


PLOS ONE | 2014

Future Climate Scenarios for a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency

Albert Calbet; Andrey F. Sazhin; Jens C. Nejstgaard; Stella A. Berger; Zachary S. Tait; Lorena Olmos; Despoina Sousoni; Stamatina Isari; Rodrigo Andrés Martínez; Jean-Marie Bouquet; Eric M. Thompson; Ulf Båmstedt; Hans Henrik Jakobsen

We studied the effects of future climate change scenarios on plankton communities of a Norwegian fjord using a mesocosm approach. After the spring bloom, natural plankton were enclosed and treated in duplicates with inorganic nutrients elevated to pre-bloom conditions (N, P, Si; eutrophication), lowering of 0.4 pH units (acidification), and rising 3°C temperature (warming). All nutrient-amended treatments resulted in phytoplankton blooms dominated by chain-forming diatoms, and reached 13–16 μg chlorophyll (chl) a l−1. In the control mesocosms, chl a remained below 1 μg l−1. Acidification and warming had contrasting effects on the phenology and bloom-dynamics of autotrophic and heterotrophic microplankton. Bacillariophyceae, prymnesiophyceae, cryptophyta, and Protoperidinium spp. peaked earlier at higher temperature and lower pH. Chlorophyta showed lower peak abundances with acidification, but higher peak abundances with increased temperature. The peak magnitude of autotrophic dinophyceae and ciliates was, on the other hand, lowered with combined warming and acidification. Over time, the plankton communities shifted from autotrophic phytoplankton blooms to a more heterotrophic system in all mesocosms, especially in the control unaltered mesocosms. The development of mass balance and proportion of heterotrophic/autotrophic biomass predict a shift towards a more autotrophic community and less-efficient food web transfer when temperature, nutrients and acidification are combined in a future climate-change scenario. We suggest that this result may be related to a lower food quality for microzooplankton under acidification and warming scenarios and to an increase of catabolic processes compared to anabolic ones at higher temperatures.


European Journal of Protistology | 2016

Functional ecology of aquatic phagotrophic protists - Concepts, limitations, and perspectives.

Thomas Weisse; Ruth Anderson; Hartmut Arndt; Albert Calbet; Per Juel Hansen; David J. S. Montagnes

Functional ecology is a subdiscipline that aims to enable a mechanistic understanding of patterns and processes from the organismic to the ecosystem level. This paper addresses some main aspects of the process-oriented current knowledge on phagotrophic, i.e. heterotrophic and mixotrophic, protists in aquatic food webs. This is not an exhaustive review; rather, we focus on conceptual issues, in particular on the numerical and functional response of these organisms. We discuss the evolution of concepts and define parameters to evaluate predator-prey dynamics ranging from Lotka-Volterra to the Independent Response Model. Since protists have extremely versatile feeding modes, we explore if there are systematic differences related to their taxonomic affiliation and life strategies. We differentiate between intrinsic factors (nutritional history, acclimatisation) and extrinsic factors (temperature, food, turbulence) affecting feeding, growth, and survival of protist populations. We briefly consider intraspecific variability of some key parameters and constraints inherent in laboratory microcosm experiments. We then upscale the significance of phagotrophic protists in food webs to the ocean level. Finally, we discuss limitations of the mechanistic understanding of protist functional ecology resulting from principal unpredictability of nonlinear dynamics. We conclude by defining open questions and identifying perspectives for future research on functional ecology of aquatic phagotrophic protists.


Polar Biology | 1997

Egg and faecal pellet production rates of the marine copepod Metridia gerlachei northwest of the Antarctic Peninsula

Albert Calbet; Xabier Irigoien

Egg and faecal pellet production rates, and their functional response to food and temperature, were measured for the Antarctic copepod Metridia gerlachei during January 1996. The study area comprised the Gerlache and Bransfield Straits and Drake Passage. The highest rates of “in situ” egg and faecal pellet production were observed in Gerlache stations, coinciding with chlorophyll a concentrations approaching food saturation levels. In the Bransfield and Drake stations, with very low chlorophyll concentrations, the rates of egg production were either very low, or no eggs were produced. Egg production rates, although well correlated with “in situ” chlorophyll values, appeared to be independent of food concentration on a short time-scale (24-h incubations), while the production of faecal pellets was closely related to food abundance in the same experiments. In general, the rates of egg production were low, even at food saturation, with a very high individual variability. Although in the majority of Gerlache stations about 50% of total chlorophyll a corresponded to the phytoplankton size-fraction >10 μm, M. gerlachei feeds preferentially on the <10-μm fraction. Temperature had no clear effects on egg production rate but had a significant effect on pellet production rates, with maximum values at 2.5°C. These features appear to agree with the reproductive strategy attributed to the species, based on a relatively low rate of egg production extended over a long reproductive period.


Science of The Total Environment | 2003

Concentrations of plutonium and americium in plankton from the western Mediterranean Sea

Joan-Albert Sanchez-Cabeza; Juan Merino; Pere Masqué; P.I. Mitchell; L. León Vintró; William R. Schell; Lluı̈sa Cross; Albert Calbet

Understanding the transfer of radionuclides through the food chain leading to man and in particular, the uptake of transuranic nuclides by plankton, is basic to assess the potential radiological risk of the consumption of marine products by man. The main sources of transuranic elements in the Mediterranean Sea in the past were global fallout and the Palomares accident, although at present smaller amounts are released from nuclear establishments in the northwestern region. Plankton from the western Mediterranean Sea was collected and analyzed for plutonium and americium in order to study their biological uptake. The microplankton fractions accounted for approximately 50% of the total plutonium contents in particulate form. At Garrucha (Palomares area), microplankton showed much higher 239,240 Pu activity, indicating the contamination with plutonium from the bottom sediments. Concentration factors were within the range of the values recommended by the International Atomic Energy Agency. Continental shelf mesoplankton was observed to efficiently concentrate transuranics. In open seawaters, concentrations were much lower. We speculate that sediments might play a role in the transfer of transuranics to mesoplankton in coastal waters, although we cannot discard that the difference in species composition may also play a role. In Palomares, both 239,240 Pu and 241Am showed activities five times higher than the mean values observed in continental shelf mesoplankton. As the plutonium isotopic ratios in the contaminated sample were similar to those found in material related to the accident, the contamination was attributed to bomb debris from the Palomares accident. Concentration factors in mesoplankton were also in relatively good agreement with the ranges recommended by IAEA. In the Palomares station the highest concentration factor was observed in the sample that showed predominance of the dynoflagellate Ceratium spp. Mean values of the enrichment factors showed, on average, discrimination rather than enrichment in the primary producer trophic chain.


Scientific Reports | 2016

A light-induced shortcut in the planktonic microbial loop.

Robert Ptacnik; Ana Gomes; S.-J. Royer; Stella A. Berger; Albert Calbet; Jens C. Nejstgaard; Josep M. Gasol; Stamatina Isari; Stefanie D. Moorthi; Radka Ptacnikova; Maren Striebel; Andrey F. Sazhin; Tatiana M. Tsagaraki; Soultana Zervoudaki; Kristi Altoja; Panagiotis D. Dimitriou; Peeter Laas; Ayse Gazihan; Rodrigo Andrés Martínez; Stefanie Schabhüttl; Ioulia Santi; Despoina Sousoni; Paraskevi Pitta

Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.

Collaboration


Dive into the Albert Calbet's collaboration.

Top Co-Authors

Avatar

Enric Saiz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Miquel Alcaraz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Isabel Trepat

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Stamatina Isari

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Almeda

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Dacha Atienza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Andrés Martínez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Elisabetta Broglio

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dolors Vaqué

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge